• 제목/요약/키워드: Stochastic search

검색결과 133건 처리시간 0.03초

OPTIMAL DESIGN FOR CAPACITY EXPANSION OF EXISTING WATER SUPPLY SYSTEM

  • Ahn, Tae-Jin;Lyu, Heui-Jeong;Park, Jun-Eung;Yoon, Yong-Nam
    • Water Engineering Research
    • /
    • 제1권1호
    • /
    • pp.63-74
    • /
    • 2000
  • This paper presents a two- phase search scheme for optimal pipe expansion of expansion of existing water distribution systems. In pipe network problems, link flows affect the total cost of the system because the link flows are not uniquely determined for various pipe diameters. The two-phase search scheme based on stochastic optimization scheme is suggested to determine the optimal link flows which make the optimal design of existing pipe network. A sample pipe network is employed to test the proposed method. Once the best tree network is obtained, the link flows are perturbed to find a near global optimum over the whole feasible region. It should be noted that in the perturbation stage the loop flows obtained form the sample existing network are employed as the initial loop flows of the proposed method. It has been also found that the relationship of cost-hydraulic gradient for pipe expansion of existing network affects the total cost of the sample network. The results show that the proposed method can yield a lower cost design than the conventional design method and that the proposed method can be efficiently used to design the pipe expansion of existing water distribution systems.

  • PDF

A Study on Intention Exchange-based Ship Collision Avoidance by Changing the Safety Domain

  • Kim, Donggyun
    • 해양환경안전학회지
    • /
    • 제25권3호
    • /
    • pp.259-268
    • /
    • 2019
  • Even if only two ships are encountered, a collision may occur due to the mistaken judgment of the positional relationship. In other words, if an officer does not know a target ship's intention, there is always a risk of collision. In this paper, the experiments are conducted to investigate how the intention affects the action of collision avoidance in cooperative and non-cooperative situations. In non-cooperative situation, each ship chooses a course that minimizes costs based on the current situation. That is, it always performs a selfish selection. In a cooperative situation, the information is exchanged with a target ship and a course is selected based on this information. Each ship uses the Distributed Stochastic Search Algorithm so that a next-intended course can be selected by a certain probability and determines the course. In the experimental method, four virtual ships are set up to analyze the action of collision avoidance. Then, using the actual AIS data of eight ships in the strait of Dover, I compared and analyzed the action of collision avoidance in cooperative and non-cooperative situations. As a result of the experiment, the ships showed smooth trajectories in the cooperative situation, but the ship in the non-cooperative situation made frequent big changes to avoid a collision. In the case of the experiment using four ships, there was no collision in the cooperative situation regardless of the size of the safety domain, but a collision occurred between the ships when the size of the safety domain increased in cases of non-cooperation. In the case of experiments using eight ships, it was found that there are optimal parameters for collision avoidance. Also, it was possible to grasp the variation of the sailing distance and the costs according to the combination of the parameters, and it was confirmed that the setting of the parameters can have a great influence on collision avoidance among ships.

유전알고리즘을 이용한 복합 적층보의 최적설계 (Optimum Design of Composite Laminated Beam Using GA)

  • 구봉근;한상훈;이상근
    • 전산구조공학
    • /
    • 제10권4호
    • /
    • pp.349-358
    • /
    • 1997
  • 본 논문은 복합 적층구조의 최적설계에 있어서 유전알고리즘(GA)의 응용성을 보여준다. 설계점들의 최기집단이 확률론적 과정에 의해 무작위로 생성되고, 설계점들의 개선을 위해 자연선택과 적자생존의 원리가 적용되었다. 유전알고리즘의 범용성 및 신뢰성 검증을 위해 5가지 검증 함수를 고려하였으며, 수치예에서 연속형 및 정수형 그리고 이산형 설계변수를 동시에 갖는 복합 적층 캔틸레버보의 최소 중량 설계가 외부 벌칙함수가 부가된 유전알고리즘에 의해 수행되었다. 설계 문제는 강도, 변위 그리고 고유진동수 제약조건을 포함하면서 다차 비선형성으로 정식화 되었다. 수치예의 결과에 대한 비교분석을 통해 유전알고리즘 탐색 기법이 높은 범용성을 지니면서 양질의 최적해를 매우 효과적으로 찾게됨을 보였다.

  • PDF

Bayesian MBLRP 모형을 이용한 시간강수량 모의 기법 개발 (A Development of Hourly Rainfall Simulation Technique Based on Bayesian MBLRP Model)

  • 김장경;권현한;김동균
    • 대한토목학회논문집
    • /
    • 제34권3호
    • /
    • pp.821-831
    • /
    • 2014
  • 추계학적 강수발생 및 모의기법은 수문학적 모형의 입력 자료로써 널리 이용되고 있다. 그러나 Modified Bartlett-Lewis Rectangular Pulse(MBLRP)와 같은 추계학적 포아송 클러스터 강수생성 모형에 대해서 국부최적화 방법을 통한 매개변수 추정 방법은 매개변수의 신뢰성에 상당한 영향을 주는 것으로 알려져 있다. 최근에는 MBLRP 모형의 국부해추정 문제를 해소하기 위하여 Particle Swarm Optimization (PSO) 또는 Shuffled Complex Evolution developed at The University of Arizona (SCE-UA) 등 매개변수 추정 성능이 우수한 전역최적화기법이 도입되고 있지만, 제한된 매개변수 공간에서 항상 신뢰성 있는 매개변수 추정이 가능한 것은 아니다. 뿐만 아니라, 모형의 매개변수들이 갖고 있는 불확실성에 관한 연구는 아직 충분히 논의되지 않았다. 이러한 관점에서 본 연구는 Bayesian 기법과 연계한 MBLRP 모형을 개발하였으며 각 매개변수들의 사후분포(Posterior Distribution)를 유도하여 매개변수가 내포하는 불확실성을 정량적으로 평가하였다. 그 결과 관측값에 대한 시간단위 이하 강수발생 통계치를 효과적으로 복원하고 있음을 확인할 수 있었다.

순회 판매원 문제에서 개미 군락 시스템을 이용한 효율적인 경로 탐색 (Efficient Path Search Method using Ant Colony System in Traveling Salesman Problem)

  • 홍석미;이영아;정태충
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권9호
    • /
    • pp.862-866
    • /
    • 2003
  • 조합 최적화 문제인 순회 판매원 문제(Traveling Salesman Problem, TSP)를 유전자 알고리즘(Genetic Algorithm)과 Local Search Heuristic인 Lin-Kernighan(LK) Heuristic[1]을 이용하여 접근하는 것은 최적 해를 구하기 위해 널리 알려진 방법이다. 본 논문에서는 TSP 문제를 해결하기 위한 또 다른 접근법으로 ACS(Ant Colony system) 알고리즘을 소개하고 새로운 페로몬 갱신 방법을 제시하고자 한다. ACS 알고리즘은 다수의 개미들이 경로를 만들어 가는 과정에서 각 에지상의 페로몬 정보를 이용하며, 이러한 반복적인 경로 생성 과정을 통해 최적 해를 발견하는 방법이다. ACS 기법의 전역 갱신 단계에서는 생성된 모든 경로들 중 전역 최적 경로에 속한 에지들에 대하여 페로몬을 갱신한다. 그러나 본 논문에서는 전역 갱신 규칙이 적용되기 전에 생성된 모든 에지에 대하여 페로몬을 한번 더 갱신한다. 이 때 페로몬 갱신을 위해 각 에지들의 발생 빈도수를 이용한다. 개미들이 생성한 전체 에지들의 발생 빈도수를 페로몬 정보에 대한 가중치(weight)로 부여함으로써 각 에지들에 대하여 통계적 수치를 페로몬 정보로 제공할 수 있었다. 또한 기존의 ACS 알고리즘보다 더 빠른 속도로 최적 해를 찾아내며 더 많은 에지들이 다음 번 탐색에 활용될 수 있게 함으로써 지역 최적화에 빠지는 것을 방지할 수 있다.

유전자 알고리듬을 이용한 트러스/보 구조물의 기하학적 치수 및 토폴로지 최적설계에 관한 연구 (A study on the optimal sizing and topology design for Truss/Beam structures using a genetic algorithm)

  • 박종권;성활경
    • 한국정밀공학회지
    • /
    • 제14권3호
    • /
    • pp.89-97
    • /
    • 1997
  • A genetic algorithm (GA) is a stochastic direct search strategy that mimics the process of genetic evolution. The GA applied herein works on a population of structural designs at any one time, and uses a structured information exchange based on the principles of natural selection and wurvival of the fittest to recombine the most desirable features of the designs over a sequence of generations until the process converges to a "maximum fitness" design. Principles of genetics are adapted into a search procedure for structural optimization. The methods consist of three genetics operations mainly named selection, cross- over and mutation. In this study, a method of finding the optimum topology of truss/beam structure is pro- posed by using the GA. In order to use GA in the optimum topology problem, chromosomes to FEM elements are assigned, and a penalty function is used to include constraints into fitness function. The results show that the GA has the potential to be an effective tool for the optimal design of structures accounting for sizing, geometrical and topological variables.variables.

  • PDF

경로 탐색 기법과 강화학습을 사용한 주먹 지르기동작 생성 기법 (Punching Motion Generation using Reinforcement Learning and Trajectory Search Method)

  • 박현준;최위동;장승호;홍정모
    • 한국멀티미디어학회논문지
    • /
    • 제21권8호
    • /
    • pp.969-981
    • /
    • 2018
  • Recent advances in machine learning approaches such as deep neural network and reinforcement learning offer significant performance improvements in generating detailed and varied motions in physically simulated virtual environments. The optimization methods are highly attractive because it allows for less understanding of underlying physics or mechanisms even for high-dimensional subtle control problems. In this paper, we propose an efficient learning method for stochastic policy represented as deep neural networks so that agent can generate various energetic motions adaptively to the changes of tasks and states without losing interactivity and robustness. This strategy could be realized by our novel trajectory search method motivated by the trust region policy optimization method. Our value-based trajectory smoothing technique finds stably learnable trajectories without consulting neural network responses directly. This policy is set as a trust region of the artificial neural network, so that it can learn the desired motion quickly.

적응 분할법에 기반한 유전 알고리즘 및 그 응용에 관한 연구 (A Study on Adaptive Partitioning-based Genetic Algorithms and Its Applications)

  • 한창욱
    • 융합신호처리학회논문지
    • /
    • 제13권4호
    • /
    • pp.207-210
    • /
    • 2012
  • 유전 알고리즘은 확률에 기반한 매우 효과적인 최적화 기법이지만 지역해로의 조기수렴과 전역해로의 수렴 속도가 느리다는 단점이 있다. 본 논문에서는 이러한 단점을 보완하기 위해 적응 분할법에 기반한 유전 알고리즘을 제안하였다. 유전 알고리즘이 전역해를 효과적으로 찾도록 하는 적응 분할법은 최적화의 복잡도를 줄이기 위해 탐색공간을 적응적으로 분할한다. 이러한 적응 분할법은 탐색공간의 복잡도가 증가할수록 더 효과적이다. 제안된 방법을 테스트 함수의 최적화 및 도립진자 제어를 위한 퍼지 제어기 설계 최적화에 적용하여 그 유효성을 보였다.

Probabilistic study on buildings with MTMD system in different seismic performance levels

  • Etedali, Sadegh
    • Structural Engineering and Mechanics
    • /
    • 제81권4호
    • /
    • pp.429-441
    • /
    • 2022
  • A probabilistic assessment of the seismic-excited buildings with a multiple-tuned-mass-damper (MTMD) system is carried out in the presence of uncertainties of the structural model, MTMD system, and the stochastic model of the seismic excitations. A free search optimization procedure of the individual mass, stiffness and, damping parameters of the MTMD system based on the snap-drift cuckoo search (SDCS) optimization algorithm is proposed for the optimal design of the MTMD system. Considering a 10-story structure in three cases equipped with single tuned mass damper (STMS), 5-TMD and 10-TMD, sensitivity analyses are carried out using Sobol' indices based on the Monte Carlo simulation (MCS) method. Considering different seismic performance levels, the reliability analyses are done using MCS and kriging-based MCS methods. The results show the maximum structural responses are more affected by changes in the PGA and the stiffness coefficients of the structural floors and TMDs. The results indicate the kriging-based MCS method can estimate the accurate amount of failure probability by spending less time than the MCS. The results also show the MTMD gives a significant reduction in the structural failure probability. The effect of the MTMD on the reduction of the failure probability is remarkable in the performance levels of life safety and collapse prevention. The maximum drift of floors may be reduced for the nominal structural system by increasing the TMDs, however, the complexity of the MTMD model and increasing its corresponding uncertainty sources can be caused a slight increase in the failure probability of the structure.

평면형 패치 안테나의 최적설계를 위한 PSO와 APSO 알고리즘 비교 연구 (A Comparative Study on the PSO and APSO Algorithms for the Optimal Design of Planar Patch Antennas)

  • 김군태;김형석
    • 전기학회논문지
    • /
    • 제62권11호
    • /
    • pp.1578-1583
    • /
    • 2013
  • In this paper, stochastic optimization algorithms of PSO (Particle Swarm Optimization) and APSO (Adaptive Particle Swam Optimization) are studied and compared. It is revealed that the APSO provides faster convergence and better search efficiency than the conventional PSO when they are adopted to find the global minimum of a two-dimensional function. The advantages of the APSO comes from the ability to control the inertia weight, and acceleration coefficients. To verify that the APSO is working better than the standard PSO, the design of a 10GHz microstrip patch as one of the elements of a high frequency array antenna is taken as a test-case and shows the optimized result with 5 iterations in the APSO and 28 iterations in th PSO.