• Title/Summary/Keyword: Stochastic Process Noise

검색결과 54건 처리시간 0.017초

Resolving a velocity inversion at the geotechnical scale using the microtremor (passive seismic) survey method

  • Roberts James C.;Asten Michael W.
    • 지구물리와물리탐사
    • /
    • 제7권1호
    • /
    • pp.14-18
    • /
    • 2004
  • High levels of ambient noise and safety factors often limit the use of 'active-source' seismic methods for geotechnical investigations in urban environments. As an alternative, shear-wave velocity-depth profiles can be obtained by treating the background microtremor wave field as a stochastic process, rather than adopting the traditional approach of calculating velocity based on ray path geometry from a known source. A recent field test in Melbourne demonstrates the ability of the microtremor method, using only Rayleigh waves, to resolve a velocity inversion resulting from the presence of a hard, 12 m thick basalt flow overlying 25 m of softer alluvial sediments and weathered mudstone. Normally the presence of the weaker underlying sediments would lead to an ambiguous or incorrect interpretation with conventional seismic refraction methods. However, this layer of sediments is resolved by the microtremor method, and its inclusion is required in one-dimensional layered-earth modelling in order to reproduce the Rayleigh-wave coherency spectra computed from observed seismic noise records. Nearby borehole data provided both a guide for interpretation and a confirmation of the usefulness of the passive Rayleigh-wave microtremor method. Sensitivity analyses of resolvable modelling parameters demonstrate that estimates of shear velocities and layer thicknesses are accurate to within approximately $10\%\;to\;20\%$ using the spatial autocorrelation (SPAC) technique. Improved accuracy can be obtained by constraining shear velocities and/or layer thicknesses using independent site knowledge. Although there exists potential for ambiguity due to velocity-thickness equivalence, the microtremor method has significant potential as a site investigation tool in situations where the use of traditional seismic methods is limited.

FGN과 Daubechies Wavelets을 이용한 빠른 Self-Similar 네트워크 Traffic의 생성 (Fast Self-Similar Network Traffic Generation Based on FGN and Daubechies Wavelets)

  • 정해덕;이종숙
    • 정보처리학회논문지C
    • /
    • 제11C권5호
    • /
    • pp.621-632
    • /
    • 2004
  • 최근의 통신 네트워크에서 teletraffic의 양상은 Poisson 프로세스보다 self-similar 프로세스에 의해서 더 잘 반영된다. 이는 통신 네트워크의 teletraffic에 관련하여 self-similar한 성질을 고려하지 않는다면, 통신 네트워크의 성능에 관한 결과는 부정확 할 수밖에 없다는 의미가 된다. 따라서, 통신 네트워크에 관한 시뮬레이션을 수행하기 위한 매우 중요한 요소 중에 하나는 충분히 긴 self-similar한 sequence를 얼마나 잘 생성하느냐의 문제이다. 본 논문에서는 fractional Gaussian noise와 wavelet 변환을 이용한 새로운 pseudo-random self-similar sequence 생성기를 구현 및 분석하였다. 특별히 본 생성기는 다른 wavelet 변환보다 long range dependent한 프로세스들의 self-similar 구조에 잘 맞기 때문에 좀더 정확한 결과를 유도할 수 있는 Daubechies wavelet을 사용하였다. 본 생성기를 이용하여 매우 긴 sequence를 생성하는데 요구되는 통계적인 정확도와 생성시간에 대해서 분석하였으며, 본 논문에서 제안한 생성기의 성능은 Hurst 변수의 상대적인 정확도로 보았을 때, 그리고 sequence의 생성시간을 고려했을 때에 매우 우수함을 보였다. 이 생성기의 이론적 complexity는 n개의 난수를 발생하는데 0(n)이 요구된다.

웨이블렛 변환을 적용한 인공신경망에 의한 충주댐 일유입량 예측 (Forecast of the Daily Inflow with Artificial Neural Network using Wavelet Transform at Chungju Dam)

  • 류용준;신주영;남우성;허준행
    • 한국수자원학회논문집
    • /
    • 제45권12호
    • /
    • pp.1321-1330
    • /
    • 2012
  • 본 연구에서는 비선형적 모델인 웨이블렛-인공신경망을 적용하여 충주댐 유역의 일유입량을 예측하였다. 일반적으로 시계열 자료는 경향성, 주기성 및 추계학적 성분의 선형조합으로 이루어져 있다. 그러나 이러한 자료를 통해 시계열 모형 구축 시 경향성 및 주기성은 제거되어야하는 성분이다. 따라서 수문기상자료에 포함되어있는 경향성 및 주기성과 같은 비선형 동역학적 잡음과 측정과정에서 발생하는 단순잡음을 제거시키기 위해 디노이징기법인 웨이블렛 변환을 적용하였다. 웨이블렛 변환을 적용한 자료를 입력자료로 사용한 웨이블렛-인공신경망(WANN)과 원자료를 사용한 인공신경망(ANN)을비교하였다. 산정결과 결정계수와 선형회귀를 통한 기울기는 WANN이 ANN보다 각각0.032, 0.0115 더 큰값을 나타냈고, 타겟값과 예측값 사이의 오차를 나타내는 RMSE와 RRMSE는 WANN 모형이 ANN 보다 각각 37.388, 0.099 더 작은값을 나타냈다. 따라서 본 연구에서 적용한 WANN 모형이 ANN 보다 정확한 결과를 나타내었으며, 웨이블렛 변환을 통한 디노이징 기법의 적용이 잡음이 포함되어 있는 원자료의 사용보다 더 정확한 예측을 하는 것으로 판단된다.

주성분분석을 이용한 토끼 망막 신경절세포의 활동전위 파형 분류 (PCA­based Waveform Classification of Rabbit Retinal Ganglion Cell Activity)

  • 진계환;조현숙;이태수;구용숙
    • 한국의학물리학회지:의학물리
    • /
    • 제14권4호
    • /
    • pp.211-217
    • /
    • 2003
  • 주성분분석은 잘 알려진 데이터 분석 방법으로써 높은 차원의 데이터를 낮은 차원의 데이터로 표현하는데 효과적이어서 얼굴인식, 데이터 압축 등에 이용되고 있다. 주성분분석을 하게 되면 원 데이터의 공분산 행렬로부터 정규직교한 고유벡터와 해당하는 고유치를 얻게 되고 그 중 큰 값을 가지는 고유벡터 들을 선택하여 선형 변환함으로써 데이터의 차원을 줄일 수 있게 된다. 망막에 빛 자극이 인가되면 시세포 층에서 전기신호로 변환된 후 복잡한 신경회로를 거쳐 최종적으로 신경절세포 층에서 활동전위의 형태로 출력되게 된다. 본 연구에서는 다채널전극을 사용하여 여러 개 망막 신경절세포로부터 유래되는 활동전위를 기록한 후 개개의 신호를 구분하는 과정을 거치고, 이어서 그 신호를 만들어 내는 각 뉴론들끼리의 시간적, 공간적 흥분발사 패턴을 이해함으로써 궁극적으로 시각정보 인코딩 기전을 밝히려는 연구 목표하에 그 첫 단계로서 망막 신경절세포의 활동전위를 기록한 후 분류하는 과정을 성공적으로 수행하였기에 그 내용을 서술하고자 한다. 망막에서 기록되는 신경절세포 활동전위는 불규칙하고 확률적이기 때문에 주성분분석을 통하여 그 유형을 분류할 수 있었다. 토끼 눈으로부터 망막을 박리하여 망막조각을 얻은 후 신경절세포 층이 전극표면을 향하도록 전극에 부착하였다. 8${\times}$8의 microelectrode array (MEA)를 전극으로 사용하였고, 증폭기는 MEA 60 system을 사용하여 신경절세포 활동전위를 기록하였다. 활동전위 기록 후 파형 분류를 하였다. 잡음이 섞여있는 기록으로부터 신호를 검출하기 위하여, 잡음역치($\pm$3$\sigma$)를 설정하였다. 역치를 넘는 파형 만을 획득한 후 주성분분석을 통해 각 파형의 첫 번째 주성분, 두 번째 주성분을 계산하여 2차원 평면에 투사함으로써 몇 개의 의미있는 클러스터를 얻었다. 이 클러스터는 곧 각 신경절세포에서 유래되는 파형을 반영하므로 주성분분석을 통하여 망막 신경절세포의 활동전위를 각 세포별로 분류할 수 있음을 확인하였다.

  • PDF