• Title/Summary/Keyword: Stochastic Fractal Search (SFS)

Search Result 4, Processing Time 0.02 seconds

Examination of three meta-heuristic algorithms for optimal design of planar steel frames

  • Tejani, Ghanshyam G.;Bhensdadia, Vishwesh H.;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • v.1 no.1
    • /
    • pp.79-86
    • /
    • 2016
  • In this study, the three different meta-heuristics namely the Grey Wolf Optimizer (GWO), Stochastic Fractal Search (SFS), and Adaptive Differential Evolution with Optional External Archive (JADE) algorithms are examined. This study considers optimization of the planer frame to minimize its weight subjected to the strength and displacement constraints as per the American Institute of Steel and Construction - Load and Resistance Factor Design (AISC-LRFD). The GWO algorithm is associated with grey wolves' activities in the social hierarchy. The SFS algorithm works on the natural phenomenon of growth. JADE on the other hand is a powerful self-adaptive version of a differential evolution algorithm. A one-bay ten-story planar steel frame problem is examined in the present work to investigate the design ability of the proposed algorithms. The frame design is produced by optimizing the W-shaped cross sections of beam and column members as per AISC-LRFD standard steel sections. The results of the algorithms are compared. In addition, these results are also mapped with other state-of-art algorithms.

Novel integrative soft computing for daily pan evaporation modeling

  • Zhang, Yu;Liu, LiLi;Zhu, Yongjun;Wang, Peng;Foong, Loke Kok
    • Smart Structures and Systems
    • /
    • v.30 no.4
    • /
    • pp.421-432
    • /
    • 2022
  • Regarding the high significance of correct pan evaporation modeling, this study introduces two novel neuro-metaheuristic approaches to improve the accuracy of prediction for this parameter. Vortex search algorithms (VSA), sunflower optimization (SFO), and stochastic fractal search (SFS) are integrated with a multilayer perceptron neural network to create the VSA-MLPNN, SFO-MLPNN, and SFS-MLPNN hybrids. The climate data of Arcata-Eureka station (operated by the US environmental protection agency) belonging to the years 1986-1989 and the year 1990 are used for training and testing the models, respectively. Trying different configurations revealed that the best performance of the VSA, SFO, and SFS is obtained for the population size of 400, 300, and 100, respectively. The results were compared with a conventionally trained MLPNN to examine the effect of the metaheuristic algorithms. Overall, all four models presented a very reliable simulation. However, the SFS-MLPNN (mean absolute error, MAE = 0.0997 and Pearson correlation coefficient, RP = 0.9957) was the most accurate model, followed by the VSA-MLPNN (MAE = 0.1058 and RP = 0.9945), conventional MLPNN (MAE = 0.1062 and RP = 0.9944), and SFO-MLPNN (MAE = 0.1305 and RP = 0.9914). The findings indicated that employing the VSA and SFS results in improving the accuracy of the neural network in the prediction of pan evaporation. Hence, the suggested models are recommended for future practical applications.

Predicting concrete's compressive strength through three hybrid swarm intelligent methods

  • Zhang Chengquan;Hamidreza Aghajanirefah;Kseniya I. Zykova;Hossein Moayedi;Binh Nguyen Le
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.149-163
    • /
    • 2023
  • One of the main design parameters traditionally utilized in projects of geotechnical engineering is the uniaxial compressive strength. The present paper employed three artificial intelligence methods, i.e., the stochastic fractal search (SFS), the multi-verse optimization (MVO), and the vortex search algorithm (VSA), in order to determine the compressive strength of concrete (CSC). For the same reason, 1030 concrete specimens were subjected to compressive strength tests. According to the obtained laboratory results, the fly ash, cement, water, slag, coarse aggregates, fine aggregates, and SP were subjected to tests as the input parameters of the model in order to decide the optimum input configuration for the estimation of the compressive strength. The performance was evaluated by employing three criteria, i.e., the root mean square error (RMSE), mean absolute error (MAE), and the determination coefficient (R2). The evaluation of the error criteria and the determination coefficient obtained from the above three techniques indicates that the SFS-MLP technique outperformed the MVO-MLP and VSA-MLP methods. The developed artificial neural network models exhibit higher amounts of errors and lower correlation coefficients in comparison with other models. Nonetheless, the use of the stochastic fractal search algorithm has resulted in considerable enhancement in precision and accuracy of the evaluations conducted through the artificial neural network and has enhanced its performance. According to the results, the utilized SFS-MLP technique showed a better performance in the estimation of the compressive strength of concrete (R2=0.99932 and 0.99942, and RMSE=0.32611 and 0.24922). The novelty of our study is the use of a large dataset composed of 1030 entries and optimization of the learning scheme of the neural prediction model via a data distribution of a 20:80 testing-to-training ratio.

Applying Stochastic Fractal Search Algorithm (SFSA) in Ranking the Determinants of Undergraduates Employability: Evidence from Vietnam

  • DINH, Hien Thi Thu;CHU, Ngoc Nguyen Mong;TRAN, Van Hong;NGUYEN, Du Van;NGUYEN, Quyen Le Hoang Thuy To
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.12
    • /
    • pp.583-591
    • /
    • 2020
  • Employability has recently become the first target of the national higher education. Its model has been updated to catch the new trend of Industry 4.0. This paper aims at analyzing and ranking the determinants of undergraduate employability, focusing on business and economics majors in Ho Chi Minh City, Vietnam. In-depth interviews with content analysis have been primarily conducted to reach an agreement on a key group of factors: human capital, social capital, and identity. The Stochastic Fractal Search Algorithm (SFSA) is then applied to rank the sub-factors. Human capital is composed of three major elements: attitude, skill, and knowledge. Social capital is approached at both structural and cognitive aspects with three typical types: bonding, bridging, and linking. The analysis has confirmed the change of priority in employability determinants. Human capital is still a driver but the priority of attitude has been confirmed in the contemporary context. Then, social capital with the important order of linking, bridging, and bonding is emphasized. Skill, knowledge, and identity share the least weight in the model. It is noted that identity is newly proposed in the model but a certain role has been found. The findings are crucial for education strategies to enhance university graduate employability.