• Title/Summary/Keyword: Stirling cycle

Search Result 32, Processing Time 0.018 seconds

Thermal-flow analysis of a simple LTD (Low-Temperature-Differential) heat engine

  • Kim, Yeongmin;Kim, Won Sik;Jung, Haejun;Chen, Kuan;Chun, Wongee
    • Journal of Energy Engineering
    • /
    • v.26 no.1
    • /
    • pp.9-22
    • /
    • 2017
  • A combined thermal and flow analysis was carried out to study the behavior and performance of a small, commercial LTD (Low-Temperature-Differential) heat engine. Laminar-flow solutions for annulus and channel flows were employed to estimate the viscous drags on the piston and the displacer and the pressure difference across the displacer. Temperature correction factors were introduced to account for the departure from the ideal heat transfer processes. The analysis results indicate that the work required to overcome the viscous drags on engine moving parts and to move the displacer is much smaller than the moving-boundary work produced by the power piston for temperature differentials in the neighborhood of $20^{\circ}C$ and engine speeds below 10 RPS. A comparison with experimental data reveals large degradations from the ideal heat transfer processes. Thus, heat-transfer devices inside the displacer cylinder are recommended.

Experimental investigation on the heat transfer characteristics of an oscillatory pipe flow (원관 내 왕복유동에 따른 열전달특성의 실험적 연구)

  • Park, Sang-Jin;Lee, Dae-Yeong;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.1959-1970
    • /
    • 1996
  • Effects of oscillatory flow upon heat transfer characteristics have been studied experimentally for oscillating flow in a circular tube. The experimental apparatus was designed to simulate the heat exchangers of the Stirling or Vuilleumier cycle machines and the test section consists of heater and cooler. Measurements were presented of heat flux, axial wall temperature distribution, and radial temperature profile of the working fluid for several cases of oscillation frequency and swept distance ratio. The influences of two main parameters, frequency and tidal displacement of the oscillation were investigated. Then the heat transfer coefficient at the heater is obtained. The carried by the authors with a assumption of oscillatory laminar slug flow.