• Title/Summary/Keyword: Stirling System

Search Result 76, Processing Time 0.027 seconds

The Experimental Study of the Performance of the Rotary Stirling refrigerator (회전압축기형 스털링냉동기의 성능에 관한 실험적 연구)

  • Hong, Yong-Ju;Park, Seong-Je;Kim, Hyo-Bong;Kim, Yang-Hoon;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1312-1316
    • /
    • 2004
  • The Stirling refrigerators have been widely used for the cooling of the infrared detector and HTS to the cryogenic temperature. The Stirling refrigerator with the rotary compressor are applicable to the cooling device for the compact mobile thermal imaging system, because the refrigerators have the compact structure and light weight. The typical performance factors of the Stirling refrigerator are the cool-down time, cooling capacity at the desired temperature and the input power. And the above performance factors are depends on the thermal insulation characteristics of the Dewar. In this study, the steady thermal load of the Dewar and the performance of the Stirling refrigerator were measured. The results show the dependency of the input power and the charging pressure on the performance of the refrigerator.

  • PDF

Study of Stirling Engine Receiver for Solar Thermal Power (태양열 발전용 스터링엔진 흡수기 특성연구)

  • Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.227-232
    • /
    • 2008
  • Stirling engine for solar thermal power is an essential part of Dish-Stirling system which generates electricity by using direct normal irradiation and will go into commercialization in near future. For the Stirling engine used in this study is Solo 161 model the capacity of which is 10 kWe and was already used for the Dish-Stirling system of KIER in Jinhae. The receiver of Stirling engine absorbes concentrated solar radiation and transfer it to working fluid of Hydrogen. The working condition of striling engine is high temperature and high pressure to make high efficiency. Therefore the receiver should stand against high temperature of above 800 $^{\circ}C$ and high pressure of max. 150 bar with good performance of heat transfer. The receiver is composed of 78 Inconel tubes of 1/8" with thickness of 0.71 mm and two reserviors which is connected with two cylinders. In order to know the charaterristics of heat transfer of Stirling engine receiver, simulation on the heat transfer of the receiver of Solo 161 is conducted by using CFD code of Fluent. The heat flux on the receiver surface has a shape of Gaussian distribution so, it is necessary to simulate a whole receiver. However, It is difficult and time consuming to simulate the whole receiver that one tube with different heat flux conditions are considered in this study. From the simulation results, heat transfer charateristics of receiver are observed and tube wall and fluid temperature and heat transfer coefficient are obtained and compared with the calculated results from Dittus-Boelter's correlation.

  • PDF

Underwater striling engine design with modified one-dimensional model

  • Li, Daijin;Qin, Kan;Luo, Kai
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.3
    • /
    • pp.526-539
    • /
    • 2015
  • Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs) is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA). The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.

Development of 10 kW Dish-Stirling System for Commercialization and Analysis of Operating Characteristics (10 kW급 접시형 태양열발전시스템 사업모델 개발 및 운전특성 분석)

  • Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.118-124
    • /
    • 2010
  • In order to develop commercial model of 10kW dish-Stirling solar thermal power system, modification for the exiting facility was taken for a year as a Leading Project in KIER. During the project, solar tracking system, control and monitoring system and high durability reflector were developed and long term operation were performed. The solar tracking system was tested for four months to investigate the degree of precision and adapted to the control system for an actual operation from October in 2009. The sun tracking accuracy of ${\pm}4$ mrad using modified control system was obtained and the system operated successfully during the experimental period. The monitoring system displays engine pressure, electric generation amounts, generator RPM, receiver temperatures, and etc. from Stirling engine and weather data of Direct Normal Irradiation, Horizontal Global Insolation, wind speed & direction, and atmosphere temperature from weather station. According to the operating results in a clear sky day, electric power of 6,890 W was generated at the DNI value of 850 W/$m^2$ and the averaged solar-to-electricity efficiency during a whole day reached to 18.99%. From the overall operating results, linear power generation trend could be observed with increasing DNI value. The solar-to-electricity efficiency achieved to 19% around the DNI value of 700 W/$m^2$ and increased to 20% when the DNI value goes up to 900 W/$m^2$.

Analyses on Working Frequency of A γ-type Free-piston Stirling Engine (감마형 자유피스톤 스털링 엔진의 작동주파수 분석)

  • Jang, Seon-Jun;Sim, Kyuho;Lee, Yoon-Pyo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.7
    • /
    • pp.654-661
    • /
    • 2013
  • The dynamic characteristics of a free-piston stirling engine(FPSE) with regard to the working frequency is investigated from theoretical and experimental studies. The FPSE is modeled as a two degree-of-freedom linear vibration system. A theoretical expression on the working frequency is derived from the instability condition for self-excitation based on the linear vibration model. A ${\gamma}$-type free-piston stirling engine is fabricated for experimental studies, and its working frequency is measured on various heater temperatures. Comparisons between the theoretical and experimental results reveal that the working frequency of the test FPSE depends on both the temperature of the compression space and the temperature difference between the expansion and compression spaces.

Solar Power Generation System Using A Small-Sized Stirling Engine (소형 스털링 엔진을 이용한 태양열 발전 시스템)

  • Kim, Ki-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3339-3344
    • /
    • 2012
  • To evaluate solar energy conversion efficiency of a solar power generation system that consists of a dish-type solar receiver in the combination with a Stirling engine, a solar power generation system using a small-sized Stirling engine was developed in this study, and preliminary experiments were carried out. The total capital fee was around five hundred thousand Won, and the developed system was found to produce an electricity of 0.56 kWh corresponding to 10% in the energy conversion efficiency. The better design of the system is expected to improve the system efficiency, and the experimental data obtained in this study will be used for other various applications associated with solar power generation.

Design and Performance Prediction of Power System in a Solar Stirling Engine for 9 kW Output (9 kW 출력용 태양열 스털링엔진 발전시스템의 설계와 성능예측)

  • Bae, Myung-Whan;Kang, Sang-Yul
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2198-2204
    • /
    • 2003
  • In order to make a match of the insufficient direct solar radiation, in this study, the target output is lowered to 9 kW smaller than 25 kW in former studies. It is also necessary to match the collector/receiver with engine/generator systems to accomplish the power level of a system. The simulation analyses of a dish solar power system with stirling engine are totally carried out to predict the system performance with the designed values. In addition, an influence of direct solar radiation on system performance and operation control is discussed in simulation. It is found that the diameter of concentrator could be made small to 8 m regardless of slope errors with 2.5 and 5.0 mrad radiation, and the operation range of mean pressure control. is wide even if the direct solar radiation is a quit low.

  • PDF

Performance Prediction of a Solar Power System with Stirling Engine in Different Test Sites (설치장소에 의한 스털링엔진 태양열 발전시스템의 성능예측)

  • Kazuo Tsuchiya
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.122-128
    • /
    • 2001
  • The simulation analyses of a dish solar power system with stirling engine in this study are applied to system performance prediction if four different test sites; Seoul, Pusan and Cheju in Korea, and Naha in Japan. The effects of difference of concentrator type such as monolithic and stretched-membrane construction on system efficiency are also evaluated. The total amount of generated power for a year depends on the site. However the total maximum system efficiency in every site is approximately 16% and there isnt striking difference. It is also found that the maximum collector efficiency of stretched-membrane concentrator is about 3∼15% lower than that of the monolithic type.

  • PDF

Development of a New Air Cooling System Utilizing the Stirling Engine for Preventing Solar Cell from Overheating (태양광 모듈의 과열 방지용 공랭형 스털링기관 냉각 시스템 개발)

  • Kim, Hyoungeun;Park, Chanwoo;Chu, Jinkyung;Keum, Dongyeop;Park, Silro;Kim, Jeongmin;Kim, Daejin
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.1
    • /
    • pp.57-63
    • /
    • 2014
  • In this paper new air-cooling system utilizing Stirling engine was proposed for improving efficiency in solar photovoltaic power generation. The solar cell plate was equipped with semi-circular channel for air flow on the backside. Beta-type Stirling engine was installed on the plate and its flywheel was connected to a motor fan by a transmission belt. A forced convective air flow for heat radiation was generated by the operation of the self-starting Stirling engine. The performance tests for power generation of solar cell with or without the proposed air-cooling system were conducted under halogen lamp. From the experimental results, it was found that decline in output voltage of the solar cell with proposed cooling system was 25% less than that of the solar cell without cooling system.

Performance of Dish-Stirliling Solar Power System (Dish-Stirling 태양열 발전시스템 운전 및 성능분석)

  • Kim, Jin-Soo;Kang, Yong-Heack;Lee, Sang-Nam;Yoon, Hwan-Ki;Yu, Chang-Kyun;Kim, Jong-Kyu;Jo, Dok-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.180-183
    • /
    • 2006
  • As a final step for developing a small-scale solar thermal power generation technology, a demonstration project for a dish-stirling power system has been carried out by KIER. During the two years project period, 10kW solar-only power system was built in Jinhae city and successful solar operations were demonstrated. In this paper an example of typical clean day operation and analysis results was introduced.

  • PDF