• Title/Summary/Keyword: Stimulated emission

Search Result 65, Processing Time 0.021 seconds

Plasma Effects on the Growth of $In_{0.2}Ga_{0.8}N/GaN$ Heterostructures using Molecular Beam Epitaxy (분자선에피를 이용한 $In_{0.2}Ga_{0.8}N/GaN$ 이종접합구조의 성장에 미치는 플라즈마의 영향)

  • Shim Kyu-Hwan
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.2
    • /
    • pp.84-90
    • /
    • 2005
  • The influence of plasma parameters on the growth of $In_{0.2}Ga_{0.8}N/GaN$ heterostructures has been investigated using plasma-assisted molecular beam epitaxy. Since plasma ejects plenty of energetic particles with different energy levels and flux density at various rf power levels, plasma modulated both growth rate and optical properties significantly. For instance, surface roughness and the emission spectrum of photoluminescence were degraded at low and high rf power. According to sharp interfaces between epitaxial films and strong peaks observed from photoluminescence spectra, our experimental setup presented optimal operation range of rf powers at around 400W. The phenomena could be explained by the presence of energetic particles modulating the rate of plasma stimulated desorption and surface diffusion, and energetic particles exceeding critical value resulted in the incorporation of defects at subsurface. The optimal rf power regime increased by 100W for $In_{0.2}Ga_{0.8}N/GaN$ growth in comparison with GaN. The effects of rf power were discussed in conjunction with kinetic processes being stimulated by energetic particles.

A Study on Thermally Stimulated Luminescence and Exoelectron Emission Phenomena of MgO Single Crystals (MgO 단결정의 열자극 발광 및 Exo전자 방출 현상에 관한 연구)

  • Doo, Ha-Young;Sim, Sang-Hung;Kim, Hyun-Suk
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.11 no.3
    • /
    • pp.165-172
    • /
    • 2006
  • On the MgO single crystals doped artificially with Cr, Cu, Fe we observed thermally stimulated luminescence(TSL) glow curves and spectra, and analyzed them in the temperatures range from at liquid nitrogen temperature(77K) to about 500K after excitation with UV or X-ray irradiation. TSL glow curves obtained from these samples show five peaks at 136.5K, 223.5K, 360K, 390K, 440K, and their estimated activation energies are 0.27eV, 0.63eV, 1.08eV, 1.08eV, 1.19eV, and 1.33eV, respectively. When we measured TSL spectrum at the range of 200nm to 650nm on the MgO single crystals. we also analyzed the peak wavelength which obtained at 345nm, 375nm, and 410nm from measurement of TSL spectrum and described their luminescence mechanisms. TSL spectrum peaks emitted from MgO:Cr, MgO:Cu, and MgO:Fe appear at the wavelengths of 345nm, 360nm, and 375nm, respectively.

  • PDF

Output characteristics of intracavity frequency doubling of laser-diode end-pumped Nd:S-VAP laser (반도체레이저 단면여기 Nd:S-VAP 레이저의 내부공진기 제2고조파 출력 특성)

  • 박준학
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.4
    • /
    • pp.294-298
    • /
    • 2000
  • The output characteristics of intracavity frequency doubling of laser-diode end-pumped Nd:S-VAP laser were investigated. Nd:S-VAP is suitable for a microchip laser medium, which has a low threshold property because of a very high value of the stimulated emission cross-section and lifetime product. The threshold energy measured was 81 J.ll. The second harmonic output energy measured was $126\mu\textrm{J}$at a pump energy of $2\mu\textrm{J}$. We described for intracavity frequency doubling by using theoretical calculations. Q-switched second harmonic energy measured was $15\mu\textrm{J}$per pulse with a pulse-width of 26 ns. at a pump energy of 2 mJ and an $M^2$ of 1.47 represented a good beam quality. ality.

  • PDF

A Study on the Amplification Characteristics of High-Power Gaussian Nd:Glass Laser Beam (대출력 Gauss형 Nd:글라스 레이저 비임의 증폭특성에 관한 연구)

  • 강형부;장용무
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.10
    • /
    • pp.741-747
    • /
    • 1987
  • The high-power Nd:glass system with five-stage amplifier was designed and its amplification characteristics was studied for developing high-power Nd:glass laser system as an energy driver of inertial confinement fusion(ICF). In order to study the amplification characteristics of remporal and spacial Gaussian laser beam, the dependence of them on pumping efficiency and rod loss were studied and discussed. The output energy of this system using phosphate Nd glass rod(LHG-7,LHG-8) and silicate Nd glass rod(LSG-91H), respectively, was calculated by the computer simulation using Avizonis-Grotbeck and Frantz Nodvik equations. As results of this simulation, it was found that the shorter the risetime of laser pulse, the larger the amplification factor and that the larger peak value of laser pulse, the lower the amplification factor. The output inergies of 179J, 344J, and 7J were obtained by the designed five-stage amplified high-power Nd:glass laser system using glass rods of LHG-7,LHG-8, and LSG-91H, respectively. From the results it was found that the laser system using the LHG-8 glass rod was the most excellent one among the systems and the cross section for stimulated emission of the gain coefficient was essentially important parameter for the amplification characteristics.

  • PDF

Detection of Hydrogen Peroxide in vitro and in vivo Using Peroxalate Chemiluminescent Micelles

  • Lee, Il-Jae;Hwang, On;Yoo, Dong-Hyuck;Khang, Gil-Son;Lee, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2187-2192
    • /
    • 2011
  • Hydrogen peroxide plays a key role as a second messenger in the normal cellular signaling but its overproduction has been implicated in various life-threatening diseases. Peroxalate chemiluminescence is the light emission from a three component reaction between peroxalate, hydrogen peroxide and fluorophores. It has proven great potential as a methodology to detect hydrogen peroxide in physiological environments because of its excellent sensitivity and specificity to hydrogen peroxide. We developed chemiluminescent micelles composed of amphiphilic polymers, peroxalate and fluorescent dyes to detect hydrogen peroxide at physiological concentrations. In this work, we studied the relationship between the chemiluminescence reactivity and stability of peroxalate by varying the substitutes on the aryl rings of peroxalate. Alkyl substitutes on the aryl ring of peroxalate increased the stability against water hydrolysis, but diminished the reactivity to hydrogen peroxide. Chemiluminescent micelles encapsulating diphenyl peroxalate showed significantly higher chemiluminescence intensity than the counterpart encapsulating dimethylphenyl or dipropylphenyl peroxalate. Diphenyl peroxalate-encapsulated micelles could detect hydrogen peroxide generated from macrophage cells stimulated by lipopolysaccharide (LPS) and image hydrogen peroxide generated during LPS-induced inflammatory responses in a mouse.

Feasibility of simultaneous measurement of cytosolic calcium and hydrogen peroxide in vascular smooth muscle cells

  • Chang, Kyung-Hwa;Park, Jung-Min;Lee, Moo-Yeol
    • BMB Reports
    • /
    • v.46 no.12
    • /
    • pp.600-605
    • /
    • 2013
  • Interplay between calcium ions ($Ca^{2+}$) and reactive oxygen species (ROS) delicately controls diverse pathophysiological functions of vascular smooth muscle cells (VSMCs). However, details of the $Ca^{2+}$ and ROS signaling network have been hindered by the absence of a method for dual measurement of $Ca^{2+}$ and ROS. Here, a real-time monitoring system for $Ca^{2+}$ and ROS was established using a genetically encoded hydrogen peroxide indicator, HyPer, and a ratiometric $Ca^{2+}$ indicator, fura-2. For the simultaneous detection of fura-2 and HyPer signals, 540 nm emission filter and 500 nm~ dichroic beamsplitter were combined with conventional exciters. The wide excitation spectrum of HyPer resulted in marginal cross-contamination with fura-2 signal. However, physiological $Ca^{2+}$ transient and hydrogen peroxide were practically measurable in HyPer-expressing, fura-2-loaded VSMCs. Indeed, distinct $Ca^{2+}$ and ROS signals could be successfully detected in serotonin-stimulated VSMCs. The system established in this study is applicable to studies of crosstalk between $Ca^{2+}$ and ROS.

The Fabrication of an Applicative Device for Trench Width and Depth Using Inductively Coupled Plasma and the Bulk Silicon Etching Process

  • Woo, Jong-Chang;Choi, Chang-Auck;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.1
    • /
    • pp.49-54
    • /
    • 2014
  • In this study, we carried out an investigation of the etch characteristics of silicon (Si) film, and the selectivity of Si to $SiO_2$ in $SF_6/O_2$ plasma. The etch rate of the Si film was decreased on adding $O_2$ gas, and the selectivity of Si to $SiO_2$ was increased, on adding $O_2$ gas to the $SF_6$ plasma. The optical condition of the Si film with this work was 1,350 nm/min, at a gas mixing ratio of $SF_6/O_2$ (=130:30 sccm). At the same time, the etch rate was measured as functions of the various etching parameters. The X-ray photoelectron spectroscopy analysis showed the efficient destruction of oxide bonds by ion bombardment, as well as the accumulation of high volatile reaction products on the etched surface. Field emission auger electron spectroscopy analysis was used to examine the efficiency of the ion-stimulated desorption of the reaction products.

Behavior of Charged Particles do $(Sr_{0.85}{\cdot}Ca_{0.15})_mTiO_3$ Grain Boundary Layer Ceramics ($(Sr_{0.85}{\cdot}Ca_{0.15})_mTiO_3$ 입계층 세라믹의 하전입자 거동)

  • 김진사;정동효;김상남;박재세;최운식;이준용
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.209-212
    • /
    • 1995
  • In this paper, the $(Sr_{0.85}{\cdot}Ca_{0.15})TiO_3$ of paraelectric grain boundary layer (GBL) ceramics were fabricated. The characteristics of electrical conduction and the thermally stimulated current(TSC) were measured respectively. The region I below 200[V/cm] shows the ohmic conduction, the region II between 200[V/cm] and 1000[V/cm] can be explained by the Pool-Frenkel emission theory, and the region III above 2000[V/cm] is dominated by the tunneling effect. As a result, The origins of these peaks are that the ${\alpha}$ peak observed at $-20[^{\circ}C]$ looks like to be ascribed to the ionization excitation from donor level in the grain, and the ${\alpha}^{\prime}$ peak observed at $-20[^{\circ}C]$ appears to show up by detrap of the trapped carrier of border between the oxidation layer and the grain, and the ${\beta}$ peak observed at $80[^{\circ}C]$ seems to be resulted from hopping conduction of existing carrier in the trap site of the border between the oxidation and second phase.

  • PDF

Interleukin-6-producing paraganglioma as a rare cause of systemic inflammatory response syndrome: a case report

  • Yin Young Lee;Seung Min Chung
    • Journal of Yeungnam Medical Science
    • /
    • v.40 no.4
    • /
    • pp.435-441
    • /
    • 2023
  • Pheochromocytomas and paragangliomas (PPGLs) may secrete hormones or bioactive neuropeptides such as interleukin-6 (IL-6), which can mask the clinical manifestations of catecholamine hypersecretion. We report the case of a patient with delayed diagnosis of paraganglioma due to the development of IL-6-mediated systemic inflammatory response syndrome (SIRS). A 58-year-old woman presented with dyspnea and flank pain accompanied by SIRS and acute cardiac, kidney, and liver injuries. A left paravertebral mass was incidentally observed on abdominal computed tomography (CT). Biochemical tests revealed increased 24-hour urinary metanephrine (2.12 mg/day), plasma norepinephrine (1,588 pg/mL), plasma normetanephrine (2.27 nmol/L), and IL-6 (16.5 pg/mL) levels. 18F-fluorodeoxyglucose (FDG) positron emission tomography/CT showed increased uptake of FDG in the left paravertebral mass without metastases. The patient was finally diagnosed with functional paraganglioma crisis. The precipitating factor was unclear, but phendimetrazine tartrate, a norepinephrine-dopamine release drug that the patient regularly took, might have stimulated the paraganglioma. The patient's body temperature and blood pressure were well controlled after alpha-blocker administration, and the retroperitoneal mass was surgically resected successfully. After surgery, the patient's inflammatory, cardiac, renal, and hepatic biomarkers and catecholamine levels improved. In conclusion, our report emphasizes the importance of IL-6-producing PPGLs in the differential diagnosis of SIRS.

Development of an Alignment Method for Retarders in isoSTED Microscopy

  • Ilkyu Park;Dong-Ryoung Lee
    • Current Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.421-426
    • /
    • 2024
  • The use of stimulated emission depletion (STED) microscopy has significantly improved resolution beyond the limits imposed by diffraction; Furthermore, STED microscopy adopts a 4Pi-geometry to achieve an isotropic improvement in resolution. In isoSTED microscopy, a polarizing beam splitter and retarders are used in a 4Pi cavity to split beams of identical power, generating constructive and destructive interference for lateral and axial resolution improvements, respectively. The precise alignment of the retarders is crucial for optimizing the performance of isoSTED microscopy, because this orientation affects the quality of the depletion focus, necessitating zero intensity at the center. Incomplete destructive interference can lead to unwanted fluorescence inhibition, resulting in degraded resolution and contrast. However, measuring the intensity and polarization state in each optical path of the 4Pi cavity is complex and requires additional devices such as a power meter. Here, we propose a simple and accurate alignment method for the 4Pi cavity in isoSTED microscopy. Our approach demonstrates the equal allocation of power between upper and lower beam paths and achieves complete destructive interference using a polarizing beam displacer and a single CCD camera positioned outside the 4Pi cavity.