• Title/Summary/Keyword: Stiffness test

Search Result 2,367, Processing Time 0.026 seconds

Evaluation of Subgrade Stiffness using Pressuremeter Test (공내재하시험에 의한 포장하부기초 강성도 평가)

  • Lim, Yu-Jin;Hai, Nguyen Tien;Jang, Duk-Sun
    • International Journal of Highway Engineering
    • /
    • v.6 no.2 s.20
    • /
    • pp.25-36
    • /
    • 2004
  • The pressuremeter test can be used as an effective tool for evaluating stiffness of lower pavement layers including subgrade and subbase. At present, the most practical and applicable methods for evaluation of the stiffness of the subgrade and subbase are PBT and CBR in Korea. However, these methods have inherent drawbacks and large variabilities of test results themselves. In this study, an evaluation method and a test procedure that can be used for decision of pavement stiffness using pressuremeter were developed. The obtained results representing stiffness of the subgrade and subbase can replace PBT's soil reaction value k and CBR in design methods. It is found that the developed procedure based on the pressuremeter can provide an effective correaltion between the PBT's soil reaction value k and PMT's reloading modulus ($E_R$).

  • PDF

Prediction for degradation of strength and stiffness of fine grained soil using Direct Simple Shear Test (DSST) (직접단순전단시험을 통한 세립토의 강도와 강성저하 예측)

  • Song, Byung-Woong;Yasuhara, kazuya;Kim, Jeong-Ho;Choi, In-Gul;Yang, Tae-Seon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.529-536
    • /
    • 2005
  • Based on an estimating method for post-cyclic strength and stiffness with cyclic triaxial tests, Direct Simple Shear (DSS) tests were carried out to confirm whether the method can be adapted to DSS test on fine-grained soils: silty clay, plastic silt, and non-plastic silt. Results from post-cyclic DSS tests were interpreted by a modified method as adopted for post-cyclic triaxial tests. In particular, influence of plasticity index for fine-grained soils was emphasised. Findings obtained from the present study are: (i) the higher the plasticity index of fine-grained soils is, the less not stiffness ratio but strength ratio decreases with increment of a normalised excess pore water pressure; and (ii) post-cyclic strength and stiffness results from DSS tests agree well with those predicted by the method modified from a procedure used for triaxial test results.

  • PDF

Performance Predictions of Tilting Pad Journal Bearing with Ball-Socket Pivots and Comparison to Published Test Results (볼 소켓형 피봇을 갖는 틸팅 패드 저널 베어링의 성능 예측 및 기존 결과와의 비교)

  • Kim, Tae Ho;Choi, Tae Gyu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.2
    • /
    • pp.63-68
    • /
    • 2017
  • This paper predicts the rotordynamic force coefficients of tilting pad journal bearings (TPJBs) with ball-socket pivot and compares the predictions to the published test data obtained under load-between-pad (LBP) configuration. The present TPJB model considers the pivot stiffness calculated based on the Hertzian contact stress theory. Due to the compliance of the pivot, the predicted journal eccentricity agree well with the measured journal center trajectory for increasing static loads, while the early prediction without pivot model consideration underestimates it largely. The predicted pressure profile shows the significant pressure development even on the unloaded pads along the direction opposite to the loading direction. The predicted stiffness coefficients increase as the static load and the rotor speed increase. They agree excellently with test data from open literature. The predicted damping coefficients increase as the static load increases and the rotor speed decreases. The prediction underestimates the test data slightly. In general, the current predictive model including the pivot stiffness improves the accuracy of the rotordynamic performance predictions when compared to the previously published predictions.

Stiffness Evaluation of a Heavy-Duty Multi-Tasking Lathe for Large Size Crankshaft Using Random Excitation Test (랜덤가진시험을 이용한 대형 크랭크샤프트 가공용 복합다기능 선반의 강성 평가)

  • Choi, Young Hyu;Ha, Gyung Bo;An, Ho Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.7
    • /
    • pp.627-634
    • /
    • 2014
  • Machine tool vibration is well known for reducing machining accuracy. Because vibration response of a linear structure generally depends on its transfer function if the magnitude of excitation were kept constant, this study introduces a RET(Random Excitation Test) based on FRF method to evaluate stiffness of a prototype HDMTL(Heavy-Duty Multi-Tasking Lathe) for large crankshaft of marine engine. Firstly, two force loops of the lathe and corresponding structural loops were identified:1) workpiece - spindle - head stock - main bed, 2) workpiece - tool post - carriage bed. Secondly, compliances of each structural loop were measured respectively using RET with a hydraulic exciter and then converted into stiffness. Finally, the measured stiffness was compared with that obtained previously by FEM analysis. As the result, both measured and computed stiffness were closely in agreement with each other. And the prototype HDMTL has evidently sufficient rigidity above ordinary heavy-duty lathes.

Pipe Stiffness Prediction of Buried Flexible Pipes (지중매설 연성관의 관강성 추정)

  • Park, Joon-Seok;Kim, Sun-Hee;Kim, Eung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.13-20
    • /
    • 2012
  • In this paper, we present the result of an investigation pertaining to the pipe stiffness of buried flexible pipes. Pipe stiffness (PS) formula for the parallel plate loading condition is derived based on the elasticity theory. Vertical and horizontal displacements are also derived. Vertical deflection is always larger than the horizontal deflection because some of energy due to overburden load is stored in the pipe but the difference is negligibly small. In the study, mechanical properties of the flexible pipes produced in the domestic manufacturer are tested and the results are reported in this paper. In addition, pipe stiffness is determined by the parallel plate loading tests and the finite element analysis. The difference between test and analysis is less than 14% although there are significant variations in the mechanical properties of the pipe material. Therefore, it was found that the finite element analysis can be used to predict the pipe stiffness instead of conducting parallel plate loading test.

Experimental Study on the Hydroelastic Response of a Pontoon Type Structure with Nonuniform Mass and Stiffness (불균일 강성을 갖는 폰툰형 구조물의 유탄성 응답 특성에 관한 실험 연구)

  • Cho, Seok-Kyu;Hong, Sa-Young;Kim, Jin-Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.5
    • /
    • pp.34-40
    • /
    • 2004
  • Very Large Floating Structure(VLFS) is regarded as one of promising candidates for the future utilization of ocean space. VLFS has the merits of small environmental effect. short construction term, easiness for extension and removal. It is well known that hydroelastic response is one of major design concerns of such a huge structure. Most of studies on the hydroelastic analysis of VLFS assumed uniform mass and bending stiffness. In case of a floating hotel where noticeable change of mass and stiffness at the hotel part is expected. it is necessary to investigate the effect of nonuniform mass and bending stiffness on the hydroelastic response. A model test of a pontoon type VLFS with nonuniform bending stiffness carried out for performance evaluation of a floating marina-hotel-convention center is described in this paper. Through investigation of model test results and comparison with numerical analysis using eigenfunction method, effect of the variation of bending stiffness is discussed.

Shear modulus and stiffness of brickwork masonry: An experimental perspective

  • Bosiljkov, Vlatko Z.;Totoev, Yuri Z.;Nichols, John M.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.1
    • /
    • pp.21-43
    • /
    • 2005
  • Masonry is a composite non-homogeneous structural material, whose mechanical properties depend on the properties of and the interaction between the composite components - brick and mortar, their volume ratio, the properties of their bond, and any cracking in the masonry. The mechanical properties of masonry depend on the orientation of the bed joints and the stress state of the joints, and so the values of the shear modulus, as well as the stiffness of masonry structural elements can depend on various factors. An extensive testing programme in several countries addresses the problem of measurement of the stiffness properties of masonry. These testing programs have provided sufficient data to permit a review of the influence of different testing techniques (mono and bi-axial tests), the variations caused by distinct loading conditions (monotonic and cyclic), the impact of the mortar type, as well as influence of the reinforcement. This review considers the impact of the measurement devices used for determining the shear modulus and stiffness of walls on the results. The results clearly indicate a need to re-assess the values stated in almost all national codes for the shear modulus of the masonry, especially for masonry made with lime mortar, where strong anisotropic behaviour is in the stiffness properties.

Predicting the stiffness of shear diaphragm panels composed of bridge metal deck forms

  • Egilmez, Oguz O.
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.213-226
    • /
    • 2017
  • The behavior of building industry metal sheeting under shear forces has been extensively studied and equations have been developed to predict its shear stiffness. Building design engineers can make use of these equations to design a metal deck form bracing system. Bridge metal deck forms differ from building industry forms by both shape and connection detail. These two factors have implications for using these equations to predict the shear stiffness of deck form systems used in the bridge industry. The conventional eccentric connection of bridge metal deck forms reduces their shear stiffness dramatically. However, recent studies have shown that a simple modification to the connection detail can significantly increase the shear stiffness of bridge metal deck form panels. To the best of the author's knowledge currently there is not a design aid that can be used by bridge engineers to estimate the stiffness of bridge metal deck forms. Therefore, bridge engineers rely on previous test results to predict the stiffness of bridge metal deck forms in bracing applications. In an effort to provide a design aid for bridge design engineers to rely on bridge metal deck forms as a bracing source during construction, cantilever shear frame test results of bridge metal deck forms with and without edge stiffened panels have been compared with the SDI Diaphragm Design Manual and ECCS Diaphragm Stressed Skin Design Manual stiffness expressions used for building industry deck forms. The bridge metal deck form systems utilized in the tests consisted of sheets with thicknesses of 0.75 mm to 1.90 mm, heights of 50 mm to 75 mm and lengths of up to 2.7 m; which are representative of bridge metal deck forms frequently employed in steel bridge constructions. The results indicate that expressions provided in these manuals to predict the shear stiffness of building metal deck form panels can be used to estimate the shear stiffness of bridge metal deck form bracing systems with certain limitations. The SDI Diaphragm Design Manual expressions result in reasonable estimates for sheet thicknesses of 0.75 mm, 0.91 mm, and 1.21 mm and underestimate the shear stiffness of 1.52 and 1.90 mm thick bridge metal deck forms. Whereas, the ECCS Diaphragm Stressed Skin Design Manual expressions significantly underestimate the shear stiffness of bridge metal deck form systems for above mentioned deck thicknesses.

Natural Vibration Period of Small-scaled Arch Structure by Shaking Table Test (진동대실험을 통한 축소 아치구조물의 고유진동주기 분석)

  • Kim, Gee-Cheol;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.4
    • /
    • pp.107-114
    • /
    • 2015
  • Large spatial structures can not easily predict the dynamic behavior due to the lack of construction and design practices. The spatial structures are generally analyzed through the numerical simulation and experimental test in order to investigate the seismic response of large spatial structures. In the case of analysis for seismic response of large spatial structure, the many studies by the numerical analysis was carried out, researches by the shaking table test are very rare. In this study, a shaking table test of a small-scale arch structure was conducted and the dynamic characteristics of arch structure are analyzed. And the dynamic characteristics of arch structures are investigated according to the various column cross-section and length. It is found that the natural vibration periods of the small-scaled arch structure that have large column stiffness are very similar to the natural vibration period of the non-column arch structure. And in case of arch structure with large column stiffness, primary natural frequency period by numerical analysis is very similar to the primary natural frequency period of by shaking table test. These are because the dynamic characteristics of the roof structure are affected by the column stiffness of the spatial structure.

Standardization of Stiffness Test Method of Non-bearing Lightweight Wall for building (건축용 비내력 경량벽체의 정적 수평하중저항성 시험방법의 표준화)

  • Kim, Jin-Sik;Choi, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.185-186
    • /
    • 2015
  • The use of non-bearing lightweight wall has increased recently due to the increase of high-rise buildings and supply of long-life housing. Lightweight wall has advantages such as reducing the self-weight of the building, convenience in installation, and shortening construction period, however, must have a sufficient strength to external force. This study standardized the stiffness (static horizontal load resistance) test method for lightweight walls by using the actual impact load obtained through the load analysis test conducted in the previous studies. The size of specimen was set up as height 2.4m and width 3.0m. Test apparatus and test methods were referred to BS 5234-2:1992. However, the loading level applied to the specimen was divided into 3 steps (3000N, 1000N, 500N) that can be applied selectively depending on the purpose of the wall. The deformation characteristics according to the same loading level were vary depending on the specimen's type, and the evaluation criteria for functional damage may vary depending on the material, method of construction, and purpose of wall. Therefore, we did not suggest unified evaluation criteria of the stiffness to the test results.

  • PDF