• Title/Summary/Keyword: Stiffness of subgrade

Search Result 93, Processing Time 0.015 seconds

An Experimental Study of the Soil Nailed Wall Behavior with Front Plate Rigidity (전면벽체 강성에 따른 쏘일네일링 벽체의 거동특성에 관한 실험적 고찰)

  • Kim, Hong-Taek;Kang, In-Kyu;Kwon, Young-Ho;Park, Si-Sam;Cho, Yong-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.87-94
    • /
    • 2002
  • Recently, there have been numerous attempts to expand the traditional temporary soil nailing system into a permanent wall. Two reasons for this include the soil nailed system's advantage of efficient and economic use of subgrade space and its ability to decrease the total construction cost. However, the systematic and logical design approach has not been proposed yet. The permanent soil nailing wall system, which utilizes precast concrete from soil nailing system, is already used in many countries, but the study of cast-in-place concrete lacing or rigid walls in bottom-up construction of traditional soil nailing walls is imperfect and insufficient. In this paper, various laboratory model tests have been carried out to investigate the influence of parameters, including stiffness of the rigid wall to the soil nailing structure with respect to failure mode, displacement patterns and tensile forces at the nail head in several levels of load. Then, the variation of earth pressure distribution on the soil nailing wall, built with a rigid front plate, is sought through different levels of surcharge load and tensile forces at the nail head.

The Improvement of Incompatible Sliding Contact Problem Using Mesh Refinement And Its Application to Railway Skewed Culvert Problem (요소 세분화를 이용한 비적합 미끄러지는 접촉문제의 개선과 철도 사각암거 문제에의 적용)

  • Choi, Chan-Yong;Yeo, In-Ho;Chung, Keun-Young;Lee, Gye-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.435-444
    • /
    • 2017
  • The vehicle-track structure dynamic interaction analysis problem can be treated as sliding contact problem, and it is assumed that vehicle run at a constant speed over a rail modeled as beam elements. Unfortunately, Salome-Meca can not satisfy the compatibility condition for the beam master elements, which are consist of the elements with higher order polynomial shape function, in sliding contact problem. In this study, it is suggested to use more finer beam master element mesh as the remedy for incompatibility in sliding contact problem, and the accuracy of the solution is secured. For this, the effect of beam element mesh refinement consisting runway is analysed through simple examples, and the applicability to the dynamic interaction analysis is evaluated. Finally, the dynamic interaction analysis of railway skewed culvert transition problem is carried out to evaluate the effect of supporting stiffness due to backfill pattern changes and track irregularity due to uneven subgrade settlement.

Evaluation of Particle Size Effect on Dynamic Behavior of Soil-pile System (모래 지반의 입자크기가 지반-말뚝 시스템의 동적 거동에 미치는 영향 평가)

  • Han, Jin-Tae;Yoo, Min-Taek;Yang, Eui-Kyu;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.49-58
    • /
    • 2010
  • This paper presents experimental results of a series of 1-g shaking table model tests performed on end-bearing single piles and pile groups to investigate the effect of particle size on the dynamic behavior of soil-pile systems. Two soil-pile models were tested twice: first using Jumoonjin sand, and second using Australian Fine sand. In the case of single-pile models, the lateral displacement was almost within 1% of pile diameter which corresponds to the elastic range of the pile. The back-calculated p-y curves show that the subgrade reaction of the Jumoonjin-sand-model ground was larger than that of the Australian Fine-sand-model ground at the same displacement. This phenomenon means that the stress-strain behavior of Jumoonjin sand was initially stiffer than that of Australian Fine sand. This difference was also confirmed by resonant column tests and compression triaxial tests. And the single pile p-y backbone curves of the Australian fine sand were constructed and compared with those of the Jumoonjin sand. As a result, the stiffness of the p-y backbone curves of Jumunjin sand was larger than those of Australian fine sand. Therefore, using the same p-y curves regardless of particle size can lead to inaccurate results when evaluating dynamic behavior of soil-pile system. In the case of the group-pile models, the lateral displacement was much larger than the elastic range of pile movement at the same test conditions in the single-pile models. The back-calculated p-y curves in the case of group pile models were very similar in both sands because the stiffness difference between the Jumoonjin-sand-model ground and the Australian Fine-sand-model ground was not significantly large at a large strain level, where both sands showed non-linear behavior. According to a series of single pile and group pile test results, the evaluation group pile effect using the p-multiplier can lead to inaccurate results on dynamic behavior of soil-pile system.