• Title/Summary/Keyword: Stiffness of Subgrade

Search Result 93, Processing Time 0.027 seconds

Applications of piezoelectric sensors in geotechnical engineering

  • Zeng, Xiangwu
    • Smart Structures and Systems
    • /
    • v.2 no.3
    • /
    • pp.237-251
    • /
    • 2006
  • Piezoelectric sensors have many applications in geotechnical engineering, especially in characterizing soils through measurement of wave velocities. Since mechanical properties of a material are closely associated with wave velocities, piezoelectric sensors provide a reliable and non-destructive method for the determination of soil properties. This paper presents results of recent research on measuring stiffness of a wide range of soils such as clay, sand, and gravel, characterizing anisotropic properties of soil induced by external loading, measuring stiffness of base and subgrade materials in the pavement, determining soil properties in a centrifuge model during the flight of a centrifuge, and understanding wave propagation in granular materials under micro-gravity environment using this technique.

Alternative plate finite elements for the analysis of thick plates on elastic foundations

  • Ozgan, K.;Daloglu, Ayse T.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.1
    • /
    • pp.69-86
    • /
    • 2007
  • A four-noded plate bending quadrilateral (PBQ4) and an eight-noded plate bending quadrilateral (PBQ8) element based on Mindlin plate theory have been adopted for modeling the thick plates on elastic foundations using Winkler model. Transverse shear deformations have been included, and the stiffness matrices of the plate elements and the Winkler foundation stiffness matrices are developed using Finite Element Method based on thick plate theory. A computer program is coded for this purpose. Various loading and boundary conditions are considered, and examples from the literature are solved for comparison. Shear locking problem in the PBQ4 element is observed for small value of subgrade reaction and plate thickness. It is noted that prevention of shear locking problem in the analysis of the thin plate is generally possible by using element PBQ8. It can be concluded that, the element PBQ8 is more effective and reliable than element PBQ4 for solving problems of thin and thick plates on elastic foundations.

Sensitivity Analysis of Load Trunsfer of Jointed Concrete Pavements Using 3-D Finite Element Model (3차원 유한요소 모형를 이용한 줄눈 콘크리트포장 하중전달의 민감도 분석)

  • Sun, Ren-Juan;Lim, Jin-Sun;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.145-157
    • /
    • 2008
  • Load transfer efficiency (LTE) reflects the structural performance of doweled and undoweled joints of Jointed Concrete Pavement (JCP). A 3-dimensional (3-D) model of JCP was built using ABAQUS software in this study. Three concrete slabs were placed on bonded sublayers composed of a base and subgrade. Spring elements were used to connect the adjacent slabs at joints. Different spring constants were input to the model to simulate different joint stiffness of the concrete pavement. The LTE of the joint increased with an increase of the spring constant. The effects of material properties and geometric shape on the behavior of JCP were analyzed using different elastic modulus and thickness of the slab and base in the modeling. The results showed the elastic modulus of the subgrade affected the behavior of the slab and LTE more than that of the base and the thickness of the slab and base. The effects of a negative temperature gradient on the behavior of the slab and LTE were more than that of positive and zero temperature gradients. Joints with low stiffness were more sensitive to the temperature gradient of the slab.

  • PDF

Analysis of Shear Modulus(G)-Shear Strain(γ)-Degree of Saturation(S) Characteristics of Compacted Subgrade Soil used as Railway Trackbed (다짐된 궤도 흙노반 재료의 전단탄성계수(G)-전단변형률(γ)-포화도(S) 관계특성 분석)

  • Choi, Chan Yong;Lee, Seong Hyeok;Lim, Yu Jin;Kim, Dae Sung;Park, Jae Beom
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.2
    • /
    • pp.127-138
    • /
    • 2015
  • It is important to evaluate the stiffness characteristics of compacted subgrade soil under track that is loaded dynamically. Using a mid-size Resonant Column test apparatus, normalized shear modulus and shear modulus variation with changing of confining pressure were investigated with change of degree of saturation (DOS). From an analysis of the test results, it was verified that the maximum shear modulus decreased with increases of DOS. However, normalized shear modulus increased with increases of DOS. Using the test results, a relation of G~${\gamma}$~DOS can be constructed and characterized. In the future, by performing tests with soils used as trackbed broadly in the field, a prediction model for DOS~G~${\gamma}$ can be proposed.

Numerical analysis of geocell reinforced ballast overlying soft clay subgrade

  • Saride, Sireesh;Pradhan, Sailesh;Sitharam, T.G.;Puppala, Anand J.
    • Geomechanics and Engineering
    • /
    • v.5 no.3
    • /
    • pp.263-281
    • /
    • 2013
  • Geotextiles and geogrids have been in use for several decades in variety of geo-structure applications including foundation of embankments, retaining walls, pavements. Geocells is one such variant in geosynthetic reinforcement of recent years, which provides a three dimensional confinement to the infill material. Although extensive research has been carried on geocell reinforced sand, clay and layered soil subgrades, limited research has been reported on the aggregates/ballast reinforced with geocells. This paper presents the behavior of a railway sleeper subjected to monotonic loading on geocell reinforced aggregates, of size ranging from 20 to 75 mm, overlying soft clay subgrades. Series of tests were conducted in a steel test tank of dimensions $700mm{\times}300mm{\times}700mm$. In addition to the laboratory model tests, numerical simulations were performed using a finite difference code to predict the behavior of geocell reinforced ballast. The results from numerical simulations were compared with the experimental data. The numerical and experimental results manifested the importance that the geocell reinforcement has a significant effect on the ballast behaviour. The results depicted that the stiffness of underlying soft clay subgrade has a significant influence on the behavior of the geocell-aggregate composite material in redistributing the loading system.

Evaluation of Sleeper Supporting Condition for Railway Ballasted Track using Modal Test Technique (모달시험기법을 이용한 자갈궤도의 침목지지조건평가)

  • Jung-Youl Choi;Tae-Jung Yoon;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.537-542
    • /
    • 2023
  • Recently, deformation of operating railway structures has occurred due to adjacent excavation works such as new structures and utility tunnel expansion concentrated around downtown areas. However, most of them are focused on structural review, repair and reinforcement of structures. A review of the Track is insufficient. In particular, in the case of the gravel track on the earthwork subgrade, the subgrade and the ballast are not solidified. A slight level of deformation can cause ballast relaxation. Sleeper support conditions may lead to unstable conditions. Sufficient safety must be ensured. In addition, it is a track type with a high risk of train derailment due to unstable support conditions. In this study, the correlation between the deformation characteristics of gravel tracks and track support performance according to subgrade deformation is experimentally and analytically verified. In addition, an evaluation technique that can evaluate the condition of the gravel track and the track support stiffness is presented.

Investigation of Stiffness Characteristics of Subgrade Soils under Tracks Based on Stress and Strain Levels (응력 및 변형률 수준을 고려한 궤도 흙노반의 변형계수 특성 분석)

  • Lim, Yujin;Kim, DaeSung;Cho, Hojin;Sagong, Myoung
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.5
    • /
    • pp.386-393
    • /
    • 2013
  • In this study, the so-called repeated plate load bearing test (RPBT) used to get $E_{v2}$ values in order to check the degree of compaction of subgrade, and to get design parameters for determining the thickness of the trackbed foundation, is investigated. The test procedure of the RPBT method is scrutinized in detail. $E_{v2}$ values obtained from the field were verified in order to check the reliability of the test data. The $E_{v2}$ values obtained from high-speed rail construction sites were compared to converted modulus values obtained from resonant column (RC) test results. For these tests, medium-size samples composed of the same soils from the field were used after analyzing stress and strain levels existing in the soil below the repeated loading plates. Finite element analyses, using the PLAXIS and ABAQUS programs, were performed in order to investigate the impact of the strain influence coefficient. This was done by getting newly computed $I_z$ to get the precise strain level predicted on the subgrade surface in the full track structure; under wheel loading. It was verified that it is necessary to use precise loading steps to construct nonlinear load-settlement curves from RPBT in order to get correct $E_{v2}$ values at the proper strain levels.

Prediction of the Natural Frequency of Pile Foundation System in Sand during Earthquake (사질토 지반에 놓인 지진하중을 받는 말뚝 기초 시스템의 고유 진동수 예측)

  • Yang, Eui-Kyu;Kwon, Sun-Yong;Choi, Jung-In;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.1
    • /
    • pp.45-54
    • /
    • 2010
  • It is important to calculate the natural frequency of a piled structure in the design stage in order to prevent resonance-induced damage to the pile foundation and analyze the dynamic behavior of the piled structure during an earthquake. In this paper, a simple but relatively accurate method employing a mass-spring model is presented for the evaluation of the natural frequency of a pile-soil system. Greatly influencing the calculation of the natural frequency of a piled structure, the spring stiffness between a pile and soil was evaluated by using the coefficient of subgrade reaction, the p-y curve, and the subsoil elastic modulus. The resulting natural frequencies were compared with those of 1-g shaking table tests. The comparison showed that the natural frequency of the pile-soil system could be most accurately calculated by constructing a stiffness matrix with the spring stiffness of the Reese (1974) method, which utilizes the coefficient of the subgrade reaction modulus, and Yang's (2009) dynamic p-y backbone curve method. The calculated natural frequencies were within 5% error compared with those of the shaking table tests for the pile system in dry dense sand deposits and 5% to 40% error for the pile system in saturated sand deposits depending on the occurrence of excess pore water pressure in the soil.

Stress Release Zone Around Sub-structure Constructed by Non-open Cut Methods (비개착공법으로 건설된 지하구조물 주변 지반 응력이완영역 규명)

  • Seo, Ho-Sung;Cho, Kook-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.480-488
    • /
    • 2016
  • For the development of areas around railway lines, subsurface construction using the non-open cut method under the railway has recently been increased. However, when a structure under a railway is constructed, the stress release of the ground is not considered an important factor in the design. In this study, laboratory tests were conducted to determine a zone of stress relaxation. Field tests using an inclinometer were performed to measure the horizontal displacement of the ground during non-open cut construction. The stress release zone and the subgrade stiffness were investigated by numerical analysis. The results of the laboratory tests indicated that the failure zone in the ground was similar to a Rankine's active earth pressure zone. The measured data from the inclinometer in the field tests showed that displacements started when a steel pipe was pushed into the ground. The results of numerical analysis show that lateral earth pressure was also close to Rankine's active earth pressure. The roadbed support stiffness of the soil around the structure decreased to 40% of the original value. The ground around the subsurface structure constructed using nonopen cut methods should be reinforced to maintain the running stability of train.

Mapped relationships between pier settlement and rail deformation of bridges with CRTS III SBT

  • Jiang, Lizhong;Liu, Lili;Zhou, Wangbao;Liu, Xiang;Liu, Chao;Xiang, Ping
    • Steel and Composite Structures
    • /
    • v.36 no.4
    • /
    • pp.481-492
    • /
    • 2020
  • To study the rail mapped deformation caused by the pier settlement of simply - supported bridges with China Railway Track System III (CRTS III) slab ballastless track (SBT) system under the mode of non-longitudinal connection ballastless track slab, this study derived an analytical solution to the mapped relationships between pier settlement and rail deformation based on the interlayer interaction mechanism of rail-pier and principle of stationary potential energy. The analytical calculation results were compared with the numerical results obtained by ANSYS finite element calculation, thus verifying the accuracy of analytical method. A parameter analysis was conducted on the key factors in rail mapped deformation such as pier settlement, fastener stiffness, and self-compacting concrete (SCC) stiffness of filling layer. The results indicate that rail deformation is approximately proportional to pier settlement. The smaller the fastener stiffness, the smoother the rail deformation curve and the longer the rail deformation area is. With the increase in the stiffness of SCC filling layer, the maximum positive deformation of rail gradually decreases, and the maximum negative deformation gradually increases. The deformation of rail caused by the pier settlement of common-span bridge structures will generate low-frequency excitation on high-speed trains.