• 제목/요약/키워드: Stiffness locking phenomenon

검색결과 13건 처리시간 0.023초

3차원 유한요소해석에 의한 용접응력과 변형의 해석 및 정도 (Prediction of Welding Stress and Deformation by 3D-FEM Analysis and Its Accuracy)

  • 장경호;이상형;이진형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.11-17
    • /
    • 2000
  • ,An residual stress and out-of plane deformation produced by butt welding was analyzed by four kinds of 3D-FEM programs(Thermal El-P1 Analysis) developed by authors. The magnitude of deformation of perpendicular to the welding line generated by butt welding was large when the reduced integration method was used. This was because of removal of the locking phenomenon, which it was generally known that the stiffness of the shear component of out-of-plane was largely evaluated. And the magnitude of residual stress was analyzed by using the FEM program based on a large and small deformation theory was similar to that was analyzed by the redeced integration method.

  • PDF

철근콘크리트 격납건물의 비선형 해석을 위한 쉘 유한요소 (Shell Finite Element for Nonlinear Analysis of Reinforced Concrete Containment Building)

  • 전영선;이홍표
    • 한국전산구조공학회논문집
    • /
    • 제19권1호
    • /
    • pp.93-103
    • /
    • 2006
  • 격납건물은 원자로 사고발생시 방사능물질의 외부 유출을 막는 최후의 방벽이므로 가동 중 원전의 격납건물에 대한 안전성평가는 반드시 수행되어야 된다. 이러한 맥락에서 이 논문은 원전 격납건물의 비선형해석을 위해 탄소성 모델을 바탕으로 개발된 8절점 가변형도 쉘 요소와 이를 이용한 구조물의 비선형해석에 대하여 기술하였다. 비선형해석을 위해 콘크리트의 압축거동에 Drucker-Prager 파괴기준을 적용하였고 파괴포락선의 형상을 결정짓는 재료매개변수는 이축응력 실험으로부터 도출하였다. 개발된 쉘 유한요소는 퇴화 고체기법과 횡 전단변형도를 고려하기 위하여 Reissner-Mindlin(RM)가정을 도입하였고 쉘의 두께가 얇거나, 즉 종횡비가 작거나, 균일하지 않은 유한요소망을 사용할 경우 구조물의 강성이 과대하게 평가되는 묶임현상(locking phenomenon)을 제거하기 위해 본 논문에서는 가변형도법을 도입하였다. 개발된 철근콘크리트 쉘 요소의 성능검증을 위해서 벤치마크 테스트를 수행하였고 그 결과 이 논문에서 도출한 유한요소해석 결과는 실험결과와 잘 일치 하였다

Formulation and evaluation a finite element model for free vibration and buckling behaviours of functionally graded porous (FGP) beams

  • Abdelhak Mesbah;Zakaria Belabed;Khaled Amara;Abdelouahed Tounsi;Abdelmoumen A. Bousahla;Fouad Bourada
    • Structural Engineering and Mechanics
    • /
    • 제86권3호
    • /
    • pp.291-309
    • /
    • 2023
  • This paper addresses the finite element modeling of functionally graded porous (FGP) beams for free vibration and buckling behaviour cases. The formulated finite element is based on simple and efficient higher order shear deformation theory. The key feature of this formulation is that it deals with Euler-Bernoulli beam theory with only three unknowns without requiring any shear correction factor. In fact, the presented two-noded beam element has three degrees of freedom per node, and the discrete model guarantees the interelement continuity by using both C0 and C1 continuities for the displacement field and its first derivative shape functions, respectively. The weak form of the governing equations is obtained from the Hamilton principle of FGP beams to generate the elementary stiffness, geometric, and mass matrices. By deploying the isoparametric coordinate system, the derived elementary matrices are computed using the Gauss quadrature rule. To overcome the shear-locking phenomenon, the reduced integration technique is used for the shear strain energy. Furthermore, the effect of porosity distribution patterns on the free vibration and buckling behaviours of porous functionally graded beams in various parameters is investigated. The obtained results extend and improve those predicted previously by alternative existing theories, in which significant parameters such as material distribution, geometrical configuration, boundary conditions, and porosity distributions are considered and discussed in detailed numerical comparisons. Determining the impacts of these parameters on natural frequencies and critical buckling loads play an essential role in the manufacturing process of such materials and their related mechanical modeling in aerospace, nuclear, civil, and other structures.