• Title/Summary/Keyword: Stiffness criteria

Search Result 273, Processing Time 0.031 seconds

The criteria for the change ratio of track stiffness along transition area (접속구간 궤도강성변화 기준에 관한 연구)

  • Yang, Sin-Chu;Moon, Jae-Woo;Yu, Jin-Young
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.351-357
    • /
    • 2007
  • The transition zone between railway embankment and structures, or different track types is known to be an area in which problems often arise and where extra care needs to be taken with maintenance. Differences in track stiffness have dynamic effects and these increase the force in the track and the extent of deformation. In this study, the criteria for the change ratio of track stiffness along transition area, and proper transition length are presented through train/track interaction analyses. Those are derived on the basis of permissible limitations of train and track performances such as rail stress, uplift force of fastener, reduction of dynamic wheel force, and acceleration of car body. A feasible method of evaluation of track stiffness which is necessary when a designer reviews whether the criteria are satisfied or not is also presented.

  • PDF

A Study on How to Predict and Evaluate the Dynamic Stiffness Criteria of Exposure Equipment in Precision Industrial Factory(TFT-LCD) (정밀산업(TFT-LCD) 공장 내 노광장치의 대형 세대별 동강성 허용규제치 예측 및 평가에 관한 연구)

  • Baek, Jae-Ho;Chun, Chong-Keun;Park, Sang-Gon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.15-20
    • /
    • 2011
  • The lithography system installed inside precision industry's (e.g. TFT-LCD) production factories are increasing in size, thereby increasing its dynamic load along with it. Such condition causes vibration within the area where the system is installed, which then negatively affects the production line to produce defective products. To prevent this type of situation, the facilities should adopt dynamic design that considers the lithography system's dynamic load. This study predicts the maximum value allowed for dynamic stiffness (which is a ratio of vibration response against a single unit of the dynamic load) of the lithography system and explains the result of its application on actual structures inside the facilities.

A hybrid simulated annealing and optimality criteria method for optimum design of RC buildings

  • Li, Gang;Lu, Haiyan;Liu, Xiang
    • Structural Engineering and Mechanics
    • /
    • v.35 no.1
    • /
    • pp.19-35
    • /
    • 2010
  • This paper proposes a hybrid heuristic and criteria-based method of optimum design which combines the advantages of both the iterated simulated annealing (SA) algorithm and the rigorously derived optimality criteria (OC) for structural optimum design of reinforced concrete (RC) buildings under multi-load cases based on the current Chinese design codes. The entire optimum design procedure is divided into two parts: strength optimum design and stiffness optimum design. A modified SA with the strategy of adaptive feasible region is proposed to perform the discrete optimization of RC frame structures under the strength constraints. The optimum stiffness design is conducted using OC method with the optimum results of strength optimum design as the lower bounds of member size. The proposed method is integrated into the commercial software packages for building structural design, SATWE, and for finite element analysis, ANSYS, for practical applications. Finally, two practical frame-shear-wall structures (15-story and 30-story) are optimized to illustrate the effectiveness and practicality of the proposed optimum design method.

Considerations for the Generation of In-Structure Response Spectra in Seismically Isolated Structures (면진구조물 내 층응답스펙트럼 작성을 위한 고려사항)

  • Lee, Seung Jae;Kim, Jung Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.95-103
    • /
    • 2022
  • In order to evaluate the earthquake safety of equipment in structures, it is essential to analyze the In-Structure Response Spectrum (ISRS). The ISRS has a peak value at the frequency corresponding to the structural vibration mode, but the frequency and amplitude at the peak can vary because of many uncertain parameters. There are several seismic design criteria for ISRS peak-broadening for fixed base structures. However, there are no suggested criteria for constructing the design ISRS of seismically isolated structures. The ISRS of isolated structures may change due to the major uncertainty parameter of the isolator, which is the shear stiffness of the isolator and the several uncertainty parameters caused by the nonlinear behavior of isolators. This study evaluated the effects on the ISRS due to the initial stiffness of the bi-linear curve of isolators and the variation of effective stiffness by the input ground motion intensity and intense motion duration. Analyzing a simplified structural model for isolated base structure confirmed that the ISRS at the frequency of structural mode was amplified and shifted. It was found that the uncertainty of the initial stiffness of isolators significantly affects the shape of ISRS. The variation caused by the intensity and duration of input ground motions was also evaluated. These results suggested several considerations for generating ISRS for seismically isolated structures.

The Design Criteria of elastomeric Bearing for Highway Bridges (교량용 탄성받침의 설계압축응력에 대한 고찰)

  • 전규식;이병진;조해진;정명호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.481-488
    • /
    • 1998
  • Elastomeric bearing is used as one of the most useful way for isolation structures, because the horizontal stiffness is much lower than the vertical stiffness. In the design criteria of Elastomeric bearing, the stability of the bearings is evaluated by shear strain due to compression, lateral displacement, and rotation. The question how soft rubber can sustain heavy structure is now able to be solved by Ultimate capacity test of Laminated Elastomeric Bearings, which results 1,200kg/$\textrm{cm}^2$ of the max. compressive stress and this shows what a sufficient safety factor Elastomeric bearing has !

  • PDF

Permissible Criteria of the Stiffness of Lightweight Wall by the Horizontal Static Load (정적 수평하중에 의한 경량벽체의 최대변형량 허용기준에 관한 연구)

  • Song, Jung-Hyeon;Kim, Ki-Jun;Choi, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.204-205
    • /
    • 2014
  • Among common test methods of assessing structure safety for existing lightweight walls, the criteria of the quality assessment of the horizontal static load resistance has been considered ambiguous. In the current study, therefore, an experiment was conducted to figure out the standardized assessment criteria of the lightweight wall's horizontal static load resistance. Based on the findings of the experiment with gypsum board and ALC block walls, an acceptable amount of each standard and the variables of the stud wall arising from the appropriate load (1000N) on the wall in a daily life were accounted for, arbitrarily setting the maximum deformation amount below 15mm.

  • PDF

Occupant comfort evaluation and wind-induced serviceability design optimization of tall buildings

  • Huang, M.F.;Chan, C.M.;Kwok, Kenny C.S.
    • Wind and Structures
    • /
    • v.14 no.6
    • /
    • pp.559-582
    • /
    • 2011
  • This paper presents an integrated wind-induced dynamic analysis and computer-based design optimization technique for minimizing the structural cost of general tall buildings subject to static and dynamic serviceability design criteria. Once the wind-induced dynamic response of a tall building structure is accurately determined and the optimal serviceability design problem is explicitly formulated, a rigorously derived Optimality Criteria (OC) method is to be developed to achieve the optimal distribution of element stiffness of the structural system satisfying the wind-induced drift and acceleration design constraints. The effectiveness and practicality of the optimal design technique are illustrated by a full-scale 60-story building with complex 3D mode shapes. Both peak resultant acceleration criteria and frequency dependent modal acceleration criteria are considered and their influences on the optimization results are highlighted. Results have shown that the use of various acceleration criteria has different implications in the habitability evaluations and subsequently different optimal design solutions. The computer based optimization technique provides a powerful tool for the lateral drift and occupant comfort design of tall building structures.

Design Criteria of Spring Stiffness for Pan Check Valve Using CFD Analysis (CFD 해석을 이용한 판형 체크 밸브에 대한 스프링 강성의 설계 기준)

  • Park, Ju-Yong;Baek, Seok-Heum;Kang, Jung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.3
    • /
    • pp.49-55
    • /
    • 2014
  • This paper examines the effects of spring characteristics and stiffness in relation to the characteristics of hydrodynamic force. Spring forces and stiffness determine the performance of this type of pan check valve and have an effect on the overall operation. The hydraulic efficiency of the pan check valve is relatively low compared to that of a common check valve. However, a pan check valve is structurally more stable than a common check valve. We implemented the optimum design to increase the flow rate and to resolve the suppression of the pressure drop according to the extent of the compression of the spring. From the results of a flow analysis, we demonstrate spring stiffness design criteria depending on the extent of the compression of the spring of pan check valve acting on the fluid at the inlet 1 MPa pressure.

Estimation of Stiffness Limit for Railway Bridge Vibration Serviceability (진동사용성을 고려한 철도교량구조물의 강성한계 분석)

  • Park, Kyung-Rock;Jeon, Bub-Gyu;Kim, Nam-Sik;Kim, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.80-85
    • /
    • 2008
  • In general, deflection limit criteria of bridge design specifications have been considered based on static serviceability and structural stability. Dynamic serviceability induced from bridge vibration actually has not been included in the criteria. Thus, it is necessary for comfort limit to be considered in order to check dynamic serviceability on bridge vibration. In this study, the comfort limit of bridge structures based on the RMQ and VDV considering the signal fluctuation effectively and the time duration exposed has been constructed. The comfort limit developed in time domain was verified by using vibration signals directly measured from the existing bridges. Comparing the developed comfort limit with the conventional ones defined in frequency domain, it is shown that the comfort limit developed in time domain would be more feasible for evaluating quantitatively the serviceability due to bridge vibration. Using the Bridge-train interaction analysis program, dynamic response of the bridge by the stiffness change were obtained for several railway bridges. And, a stiffness limit satisfying the bridge vibration serviceability was estimated by compared with comport limit. From the results, a new deflection limit on bridge structures satisfying the vibration serviceability could be proposed by comparing with the conventional deflection limit criteria.

  • PDF

A Study on Dynamic Stiffness Criteria Decision of Structure (건물 용도에 따른 동강성 기준 결정에 관한 연구)

  • Ryu, Kuk-Hyun;Lee, Hong-Ki;Park, Hae-Dong;Baek, Jae-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.352-355
    • /
    • 2006
  • 본 연구에서는 건축 구조물 용도에 따라 구조물의 직접적인 손상을 방지하기 위하여 규제하는 기준치, 인간의 감각 통하여 느껴지는 진동으로 안락한 주거 환경 또는 작업 환경을 유지하기 위한 규제치, 구조조물에 설치된 장비, 특히 반도체, 통신장비등과 같이 정밀장비의 경우 구조물에서 발생되는 진동으로부터 장비의 성능을 유지시켜주기 위한 기준 등을 확인하여 건물 용도에 최적의 진동 허용 규제치를 제안하며 기준에 따른 초기설계단계에서 최적저감대책을 수립하고자 함이다.

  • PDF