• 제목/요약/키워드: Stiffness Parameter

검색결과 634건 처리시간 0.024초

기기 기초 시스템의 지렛대 효과 해석 (The Analysis of Prying Action for Equipment Anchor System.)

  • 김강식;유원진;김갑순;서용표
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.83-90
    • /
    • 2002
  • Prying action caused by the eccentric loads within the equipment itself and the anchors can result in a lack of adequate stiffness and strength within the equipment and in additional moment loadings on the anchors. A typical case of prying action often found in power plants is the angle type anchorage system with expansion bolt. Experimental and analytical studies were performed to investigate the relationship between the amplification factors and various geometrical and material factors. It is revealed that the value of the factor is effected by the stiffness of bolt and angle, lateral stiffness of cabinet, and geometrical parameter of anchor system.

  • PDF

설계파라미터 변경에 따른 구조물의 동특성 변화 해석 (A Structural Eigenderivative Analysis by Modification of Design Parameter)

  • 이정윤
    • 대한기계학회논문집A
    • /
    • 제26권4호
    • /
    • pp.739-744
    • /
    • 2002
  • This study predicts the modified structural eigenvectors and eigenvalues due to the change in the mass and stiffness of a structure by iterative calculation of the sensitivity coefficient using the original dynamic characteristics. The method is applied to examples of a cantilever and 3 degree of freedom lumped mass model by modifing the mass and stillness. The predicted dynamic characteristics are in good agreement with these from the structural reanalysis using the modified mass and stiffness.

접합부와 보의 상대강성을 고려한 중층 철골 모멘트 골조의 내진해석 (Seismic Analysis of Mid Rise Steel Moment Resisting Frames with Relative Stiffness of Connections and Beams)

  • 하성환;강철규;한홍수;한권규;최병정
    • 한국강구조학회 논문집
    • /
    • 제23권5호
    • /
    • pp.595-606
    • /
    • 2011
  • 본 연구는 기둥-보 접합부의 강성에 따른 철골 모멘트 골조의 동적특성의 차이를 파악하는데 목적이 있다. 6층의 철골 모멘트 골조를 설계하였으며, 접합부는 DWA (Double Web-Angle Connection), TSW (Top-and Seat-Angle Connection with Double Web-Angle), FEMA(SAC-Test Summary No.28, Specimen ID : UCSD-6) 접합부를 사용하였고, 완전강접합부의 동적거동특성과 상호 비교 검토하였다. 반강접 접합부의 회전강성은 Chen 과 Kishi 에 의해 제안된 3매개변수파워모델을 사용하여 구하였다. 접합부의 회전 강성을 보의 강성으로 나누어 상대강성으로 정의하여 사용하였다. 모든 골조에 대하여 비선형 정적해석(push over analysis), 반복하중 해석 및 시간이력해석을 수행하였다. 각 접합부의 강성에 따른 내진거동은 층간변위, 소성힌지 및 이력 에너지 분배의 항목별로 비교 분석하였다.

Rapid assessment of suspension bridge deformation under concentrated live load considering main beam stiffness: An analytical method

  • Wen-ming Zhang;Jia-qi Chang;Xing-hang Shen;Xiao-fan Lu;Tian-cheng Liu
    • Structural Engineering and Mechanics
    • /
    • 제88권1호
    • /
    • pp.53-65
    • /
    • 2023
  • With the gradual implementation of long-span suspension bridges into high-speed railway operations, the main beam's bending stiffness contribution to the live load response permanently grows. Since another critical control parameter of railway suspension bridges is the beam-end rotation angle, it should not be ignored by treating the main beam deflection as the only deformation response. To this end, the current study refines the existing method of the main cable shape and simply supported beam bending moment analogy. The bending stiffness of the main beam is considered, and the main beam's analytical expressions of deflection and rotation angle in the whole span are obtained using the cable-beam deformation coordination relationship. Taking a railway suspension bridge as an example, the effectiveness and accuracy of the proposed analytical method are verified by the finite element method (FEM). Comparison of the results by FEM and the analytical method ignoring the main beam stiffness revealed that the bending stiffness of the main beam strongly contributed to the live load response. Under the same live load, as the main beam stiffness increases, the overall deformation of the structure decreases, and the reduction is particularly noticeable at locations with original larger deformations. When the main beam stiffness is increased to a certain extent, the stiffening effect is no longer pronounced.

Suggesting double-web I-shaped columns for omitting continuity plates in a box-shaped column

  • Saffari, Hamed;Hedayat, Amir A.;Goharrizi, Nasrin Soltani
    • Steel and Composite Structures
    • /
    • 제15권6호
    • /
    • pp.585-603
    • /
    • 2013
  • Generally the required strength and stiffness of an I-shaped beam to the box-shaped column connection is achieved if continuity plates are welded to the column flanges from all sides. However, welding the forth edge of a continuity plate to the column flange may not be easily done and is normally accompanied by remarkable difficulties. This study was aimed to propose an alternative for box columns with continuity plates to diminish such problems. For this purpose a double-web I-shaped column was proposed. In this case the strength and rotational stiffness of the connection was provided by nearing the column webs to each other. Finite element studies on about 120 beam-column connections showed that the optimum proportion of the distance between two column webs and the width of the column flange (parameter ${\beta}$) was a function of the ratio of the beam flange width to the column flange width (parameter ${\alpha}$). Hence, based on the finite element results, an equation was proposed to estimate the optimum value of parameter ${\beta}$ in terms of parameter ${\alpha}$ to achieve the highest connection performance. Results also showed that the strength and ductility of post-Northridge connections of such columns are in average 12.5 % and 54% respectively higher than those of box-shaped columns with ordinary continuity plates. Therefore, a double-web I-shaped column of optimum arrangement might be a proper replacement for a box column with continuity plates when beams are rigidly attached to it.

5단계 가압 맥파측정에 의한 연령별 혈관 경화도 분석 (Analysis of Arterial Stiffness by Age Using Pulse Waveform Measurement of 5-levels Graded Pressure)

  • 권선민;강희정;임윤경;이용흠
    • Korean Journal of Acupuncture
    • /
    • 제27권2호
    • /
    • pp.107-120
    • /
    • 2010
  • Objectives : The aim of this study is to measure pulse waveforms by applying 5-level graded pressure, and selecting optimum pulse waveforms. Also to proposing the possibility of using AW(Area of the 1/3 upper height of h1) rate in respect to AT(Total Area) for risk assessment of hypertension or arteriosclerosis is another aim of the study. Methods : Pulse waveforms of normotensive were measured by 5-level graded pressure. The pulse waveforms well reflecting properties of blood vessel(having the largest h1) were selected for optimum pulse waveforms. Various parameters(h-parameter, t-parameter, and others) of optimum pulse waveforms were analyzed. AIx(Augmentation index) was calculated by height-parameters to assess arterial stiffness. The area rate of the 1/3 upper height for h1 in respect to total area was analyzed according to aging. Results : According to aging 1. in height-parameter, h2 and h3 were increased but h5 was decreased. 2. In time-parameter, t2, t3, and t5 were getting short. 3. Area of systolic period was increased, and that of diastolic period decreased. 4. AIx rose by aging. 5. AW was significantly increased despite no changes in AT. Conclusions : By analyzing optimum pulse waveforms of 5-level graded pressure method, we could complement weakness of single graded pressure method. Also, possibility of applying the AW rate to risk assessment of hypertension or arteriosclerosis was confirmed in normotensive population which might not be assessed by AIx.

Experiments on influence of foundation mass on dynamic characteristic of structures

  • Pham, Trung D.;Hoang, Hoa P.;Nguyen, Phuoc T.
    • Structural Engineering and Mechanics
    • /
    • 제65권5호
    • /
    • pp.505-511
    • /
    • 2018
  • Recently, a new foundation model called "Dynamic foundation model" was proposed for the dynamic analysis of structures on the foundation. This model includes a linear elastic spring, shear layer, viscous damping and the special effects of mass density parameter of foundation during vibration. However, the relationship of foundation property parameters with the experimental parameter of the influence of foundation mass also has not been established in previous research. Hence, the purpose of the paper presents a simple experimental model in order to establish relationships between foundation properties such as stiffness, depth of foundation and experimental parameter of the influence of foundation mass. The simple experimental model is described by a steel plate connected with solid rubber layer as a single degree of freedom system including an elastic spring connected with lumped mass. Based on natural circular frequencies of the experimental models determined from FFT analysis plots of the time history of acceleration data, the experimental parameter of the influence of foundation mass is obtained and the above relationships are also discussed.

적응시스템과 가속도정보를 이용한 이관성 시스템의 기계계 파라미터 추정 (Parameter Estimation of Two-mass System using Adaptive System and Acceleration Information.)

  • 이준호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.232-236
    • /
    • 2000
  • In this paper a novel estimation algorithm of mechanical parameters in two-mass system is proposed. The inertia of a load and a motor and the stiffness are estimated by using RLS (Recursive Least Square) algorithm and acceleration information of motor. The effectiveness of the proposed scheme is verified with simulation and experiments results.

  • PDF

10 kWh급 초전도 플라이휠 베어링의 강성 평가 (Stiffness Evaluation of High Temperature Superconductor Bearing Stiffness for 10 kWh Superconductor Flywheel Energy Storage System)

  • 박병준;정세용;이정필;박병철;김철희;한상철;두승규;성태현;한영희
    • Progress in Superconductivity
    • /
    • 제11권1호
    • /
    • pp.57-61
    • /
    • 2009
  • A superconductor flywheel energy storage(SFES) system is mainly act an electro-mechanical battery which transfers mechanical energy into electrical form and vice versa. SFES system consists of a pair of non-contacting High Temperature Superconductor (HTS) bearings with a very low frictional loss. But it is essential to design an efficient HTS bearing considering with rotor dynamic properties through correct calculation of stiffness in order to support a huge composite flywheel rotor with high energy storage density. Static properties of HTS bearings provide data to solve problems which may occur easily in a running system. Since stiffness to counter vibration is the main parameter in designing an HTS bearing system, we investigate HTS bearing magnetic force through static properties between the Permanent Magnet(PM) and HTS. We measured axial / radial stiffness and found bearing stiffness can be easily changed by activated vibration direction between PM and HTS bulk. These results are used to determine the optimal design for a 10 kWh SFES.

  • PDF

Buckling of thick deep laminated composite shell of revolution under follower forces

  • Khayat, Majid;Poorveis, Davood;Moradi, Shapour;Hemmati, Mona
    • Structural Engineering and Mechanics
    • /
    • 제58권1호
    • /
    • pp.59-91
    • /
    • 2016
  • Laminated composite shells are commonly used in various engineering applications including aerospace and marine structures. In this paper, using semi-analytical finite strip method, the buckling behavior of laminated composite deep as well as thick shells of revolution under follower forces which remain normal to the shell is investigated. The stiffness caused by pressure is calculated for the follower forces subjected to external fibers in thick shells. The shell is divided into several closed strips with alignment of their nodal lines in the circumferential direction. The governing equations are derived based on first-order shear deformation theory which accounts for through thickness-shear flexibility. Displacements and rotations in the middle surface of shell are approximated by combining polynomial functions in the meridional direction as well as truncated Fourier series with an appropriate number of harmonic terms in the circumferential direction. The load stiffness matrix which accounts for variation of loads direction will be derived for each strip of the shell. Assembling of these matrices results in global load stiffness matrix which may be un-symmetric. Upon forming linear elastic stiffness matrix called constitutive stiffness matrix, geometric stiffness matrix and load stiffness matrix, the required elements for the second step analysis which is an eigenvalue problem are provided. In this study, different parameter effects are investigated including shell geometry, material properties, and different boundary conditions. Afterwards, the outcomes are compared with other researches. By considering the results of this article, it can be concluded that the deformation-dependent pressure assumption can entail to decrease the calculated buckling load in shells. This characteristic is studied for different examples.