• 제목/요약/키워드: Stiffness Matrix

검색결과 923건 처리시간 0.028초

A Study on the Laterally Dynamic Characteristics and the Finite Elements of Concrete Slab Track (슬래브궤도에 대한 유한요소와 횡방향 동특성에 관한 연구)

  • 조병완;권병윤;태기호;마성운
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 2001년도 추계학술대회 논문집
    • /
    • pp.500-507
    • /
    • 2001
  • In this study, Interaction among each element was construed by the unit of new stiffness matrix to analyze the finite element about Japanese precast concrete slab track and improved slab track. Dynamic analysis which is assumed a static analysis and a trainload on the transverse and the longitudinal load of the train into a series periodic function was performed by using the common program. And then, the difference of the movement between an improved section and an existing structure type was realized. Longitudinal static analysis indicated that the stress of the improved section is smaller than that of the protrusion of the existing slab track. And static and dynamic analysis on transverse load showed a little decrease of the displacement on new slab track. But the dynamic analysis result showed that new track system was considerably decreased by 30% compared with the existing Japanese slab track.

  • PDF

A novel approach to the form-finding of membrane structures using dynamic relaxation method

  • Labbafi, S. Fatemeh;Sarafrazi, S. Reza;Gholami, Hossein;Kang, Thomas H.K.
    • Advances in Computational Design
    • /
    • 제2권3호
    • /
    • pp.123-141
    • /
    • 2017
  • Solving a system of linear or non-linear equations is required to analyze any kind of structures. There are many ways to solve a system of equations, and they can be classified as implicit and explicit techniques. The explicit methods eliminate round-off errors and use less memory. The dynamic relaxation method (DR) is one of the powerful and simple explicit processes. The important point is that the DR does not require to store the global stiffness matrix, for which it just uses the residual loads vector. In this paper, a new approach to the DR method is expressed. In this approach, the damping, mass and time steps are similar to those of the traditional method of dynamic relaxation. The difference of this proposed method is focused on the method of calculating the damping. The proposed method is expressed such that the time step is constant, damping is equal to zero except in steps with maximum energy and the concentrated damping can be applied to minimize the energy of system in this step. In this condition, the calculation of damping in all steps is not required. Then the volume of computation is reduced. The DR method for form-finding of membrane structures is employed in this paper. The form-finding of the three plans related to the membrane structures with different loading is considered to investigate the efficiency of the proposed method. The numerical results show that the convergence rate based on the proposed method increases in all cases than other methods.

An Elastic Static Analysis of Curved Girder Bridges by the Displacement Method (변위법(變位法)에 의한 곡선형교(曲線桁橋)의 정적탄성해석(靜的彈性解析))

  • Chung, Jin Hwan;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제6권2호
    • /
    • pp.121-131
    • /
    • 1986
  • The stiffness matrix of circularly curved frame elements including the warping effects is formulated by the solutions of vlasov's differential equations, and the procedure for the elastic static analysis of curved girder systems by the displacement method is presented. The validity of this method has been demonstrated by comparing the analysis results with other solutions. And if the tangential lines of the two frame element axes connected at any nodal point coincide, the transformation to the global coordinate system can be omitted when we analyze the structures consisting of circularly curved elements. The theory introduced in this thesis can be applied with sufficient accuracy to the structures built up with horizontally circular curved frame elements which have closed or open cross sections and are symmetric to the axis perpendicular to the plane of the curvature, such as prestressed concrete box girder bridges.

  • PDF

Effectiveness of Isolation-System on Reduction of Seismic Response of Primary and Secondary Structures (주구조물 및 부구조물에 대한 감진장치의 지진응답 감소 효율성)

  • Kim, Young Sang;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제12권4_1호
    • /
    • pp.9-21
    • /
    • 1992
  • The effectiveness of the isolation system installed at the base of the primary structure and at the support of the substructure mounted on the primary structure is evaluated for reducing of structural responses under different earthquakes in this paper. The structural responses are analyzed to identify its behavior due to the input motion characteristics such as various peak acceleration and frequency content. Three analytical models are used to evaluate the effectiveness of the isolation system in this study as follows: fixed-base primary structure with support-fixed substructure, base-isolated primary structure with support-fixed substructure, and fixed-base primary structure with support-isolated substruciure. A computer code (KBISAP) is used for numerical integration of equation of motion considering the interaction between the primary structure and the secondary structure. The matrix condensation technique and constant average acceleration method are utilized in this program. And also, the effective stiffness of the base-isolator on reducing the structural response are evaluated for various earthquakes through the relationship of the acceleration - displacement.

  • PDF

P-Version Model Based on Hierarchical Axisymmetric Element (계층적 축대칭요소에 의한 P-version모델)

  • Woo, Kwang Sung;Chang, Yong Chai;Jung, Woo Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제12권4_1호
    • /
    • pp.67-76
    • /
    • 1992
  • A hierarchical formulation based on p-version of the finite element method for linear elastic axisymmetric stress analysis is presented. This is accomplished by introducing additional nodal variables in the element displacement approximation on the basis of integrals of Legendre polynomials. Since the displacement approximation is hierarchical, the resulting element stiffness matrix and equivalent nodal load vectors are hierarchical also. The merits of the propoosed element are as follow: i) improved conditioning, ii) ease of joining finite elements of different polynomial order, and iii) utilizing previous solutions and computation when attempting a refinement. Numerical examples are presented to demonstrate the accuracy, efficiency, modeling convenience, robustness and overall superiority of the present formulation. The results obtained from the present formulation are also compared with those available in the literature as well as with the analytical solutions.

  • PDF

A STUDY ON A MULTI-LEVEL SUBSTRUCTURING METHOD FOR COMPUTATIONS OF FLUID FLOW (유동계산을 위한 다단계 부분 구조법에 대한 연구)

  • Kim J.W.
    • Journal of computational fluids engineering
    • /
    • 제10권2호
    • /
    • pp.38-47
    • /
    • 2005
  • Substructuring methods are often used in finite element structural analyses. In this study a multi-level substructuring(MLSS) algorithm is developed and proposed as a possible candidate for finite element fluid solvers. The present algorithm consists of four stages such as a gathering, a condensing, a solving and a scattering stage. At each level, a predetermined number of elements are gathered and condensed to form an element of higher level. At the highest level, each sub-domain consists of only one super-element. Thus, the inversion process of a stiffness matrix associated with internal degrees of freedom of each sub-domain has been replaced by a sequential static condensation of gathered element matrices. The global algebraic system arising from the assembly of each sub-domain matrices is solved using a well-known iterative solver such as the conjugare gradient(CG) or the conjugate gradient squared(CGS) method. A time comparison with CG has been performed on a 2-D Poisson problem. With one domain the computing time by MLSS is comparable with that by CG up to about 260,000 d.o.f. For 263,169 d.o.f using 8 x 8 sub-domains, the time by MLSS is reduced to a value less than $30\%$ of that by CG. The lid-driven cavity problem has been solved for Re = 3200 using the element interpolation degree(Deg.) up to cubic. in this case, preconditioning techniques usually accompanied by iterative solvers are not needed. Finite element formulation for the incompressible flow has been stabilized by a modified residual procedure proposed by Ilinca et al.[9].

Effects of Fiber Arrangements on Stress Distributions over the Transverse Cross Section of Unidirectionally Continuous Fiber-reinforced Composites (단방향 연속 섬유 복합재 횡단면에서 섬유 배열에 따른 응력 분포 변화)

  • Choi, Soohoon;Ji, Wooseok
    • Composites Research
    • /
    • 제33권1호
    • /
    • pp.30-37
    • /
    • 2020
  • Stress distributions dependent on fiber arrangements are studied using the two-dimensional representative volume element (RVE) model for uni-directionally continuous fiber-reinforced composites subjected to transverse tensile loading. It is easily expected that the stresses around the fibers are concentrated mainly due to the stiffness mismatch between the fiber and matrix materials. In this presentation, it is shown that the stresses are not always increased although the distance between two fibers is shortened. The 2D RVE models, originally having a regular hexagonal fiber array, is utilized to study the effect of the fiber locations on the stress distributions. As the central fiber is relocated, the stress distributions around the fiber are obtained through finite element analysis. It is found that the stresses around the fiber are strongly dependent on the fiber distance as well as the angle between the loading direction and the line connecting two fibers.

Assessment of Fatigue Damage of Adhesively Bonded Composite -Metal Joints by Acousto-Ultrasonics and Acoustic Emission (음향초음파와 음향방출에 의한 복합재료-금속 접착접합부의 피로손상 평가)

  • Kwon, Oh-Yang;Lee, Kyung-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • 제21권4호
    • /
    • pp.425-433
    • /
    • 2001
  • A correlation between fatigue damage and acousto-ultrasonic (AU) parameters has been obtained from signals acquired during fatigue loading of the single-lap joints of a carbon-fiber reinforced plastic (CFRP) laminates and A16061 plate. The correlation showed an analogy to those representing the stiffness reduction $(E/E_0)$ of polymer matrix composites by the accumulation of fatigue damage. This has been attributed to the transmission characteristics of acoustic wave energy through bonded joints with delamination-type defects and their influence on the change of spectral content of AU signals. Another correlation between fatigue cycles and the spectral magnitude of acoustic emission (AE) signals has also been found during the final stage of fatigue loading. Both AU and AE can be applied almost in real-time to monitor the evolution of damage during fatigue loading.

  • PDF

A Real-time Evaluation Technique of Fatigue Damage in Adhesively Bonded Composite-Metal Joints (복합재료-금속 접착접합부의 피로손상의 실시간 평가기법)

  • Kwon, Oh-Yang;Kim, Tae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • 제19권6호
    • /
    • pp.439-447
    • /
    • 1999
  • One of the problems for practical use of fiber-reinforced plastics is the performance degradation by fatigue damage in the joints. The study is to develop a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between the qualify of bonded parts and AUP's. We obtained a curve showing the correlation between the degree of fatigue damage and AUP's calculated from signals acquired during fatigue loading of single-lap and double-lap joints of CFRP and Al6061. The curve is an analogy to the one showing stiffness reduction ($E/E_o$) of polymer matrix composites by fatigue damage. From those facts, it is plausible to predict the degree of fatigue damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joints whereas Amplitude and AUP2 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the application for real structures.

  • PDF

Blade Analysis Library Development of Dimension Reducible Modeling and Recovery Analysis for Composite Rotor Blades (복합재 로터 블레이드의 차원축소와 복원해석을 위한 블레이드 해석 라이브러리 개발)

  • Jang, Jun Hwan;Lee, Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제43권10호
    • /
    • pp.920-927
    • /
    • 2015
  • In this paper, numerical results of sectional analysis and stress recovery were compared with the results of VABS through the blade analysis library. The results of recovery analysis for one-dimensional model including the stiffness matrix is compared with the calculated three-dimensional stress results of three-dimensionial FEM based on the principle of virtual work. We discuss the configuration of the blade analysis library and compare verifications of numerical analysis results of VABS. Blade analysis library through dimensional reduction and stress recovery is intended to be utilized in conjunction with pre- and post-processing of the analysis program of the composite blade, high-altitude uav's wing, wind blades and tilt rotor blade.