• Title/Summary/Keyword: Stiffness Matrix

Search Result 923, Processing Time 0.024 seconds

Large Deflection Analysis of a Plane Frame with Local Bending Collapse (국부적 굽힘붕괴를 수반하는 평면프레임의 대변형 해석)

  • 김천욱;원종진;강명훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1889-1900
    • /
    • 1995
  • In this study, a large deflection analysis of a plane frame composed of a thin-walled tube in investigated. When bent, a thin-walled tube is usually controlled by local buckling and subsequent bending collapse of the section. So load resistance reaches the yield level in a thin-walled rectangular tube. This relationship can be divided into three regimes : elastic, post-buckling and crippling. In this paper, this relationship is theoretically presented to be capable of describing nonlinearities and a stiffness matrix is derived by introducing a compound beam-spring element. A numerical analysis uses a constant incremental energy method and the solution is obtained by modifying stiffness matrix at elastic/inelastic stage. This analytical results, load-deflection paths show a good agreement with the test results.

The finite element model research of the pre-twisted thin-walled beam

  • Chen, Chang Hong;Zhu, Yan Fei;Yao, Yao;Huang, Ying
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.389-402
    • /
    • 2016
  • Based on the traditional mechanical model of thin-walled straight beam, the paper makes analysis and research on the pre-twisted thin-walled beam finite element numerical model. Firstly, based on the geometric deformation differential relationship, the Saint-Venant warping strain of pre-twisted thin-walled beam is deduced. According to the traditional thin-walled straight beam finite element mechanical model, the finite element stiffness matrix considering the Saint-Venant warping deformations is established. At the same time, the paper establishes the element stiffness matrix of the pre-twisted thin-walled beam based on the classic Vlasov Theory. Finally, by calculating the pre-twisted beam with elliptical section and I cross section and contrasting three-dimensional solid finite element using ANSYS, the comparison analysis results show that pre-twisted thin-walled beam element stiffness matrix has good accuracy.

Modulation of Impedance Parameters for a Teleoperator Using Distance Measurement (거리센서를 이용한 원격 조종 장치의 임피던스 변조)

  • 송지혁;박종현;김상철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.84-84
    • /
    • 2000
  • This paper proposes a new impedance control scheme based on a variable stiffness matrix for a bilateraL teleoperation. In this scheme, stiffness matrix of the impedance model in the slave is modulated based on the distance, measured by an ultrasonic sensor, between the slave and environment. At the same time, the stiffness matrix of the master is also changed accordingly in order for the impedance parameters of the combined system to remain constant The proposed scheme is implemented on a 1-dof master/slave system to perform a simple task. In the experiments, the teleoperator with the impedance parameter modulation shows better performance than one with fixed impedance parameters, especially in reducing task execution time and in avoiding excessive external forces.

  • PDF

The Geometrical Analysis of the Response and the Stiffness Matrix of a Wire Type Actuator in the Optical Disc Drive (와이어 지지형 광픽업 액츄에이터의 강성행렬과 기하학적 응답해석)

  • 단병주;최용제
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.984-990
    • /
    • 1999
  • This paper presents the geometrical methodology to decouple the vibration modes of an elastically supported single rigid body in three-dimensional space. It is shown that the vibration modes can be decoupled by placing the center of elasticity at suitable locations and thereby yielding the plane(s) of symmetry for the given stiffness matrix. The developed methodology has been applied to the actuator supported by the 4-wire suspensions in optical discs, which has one plane of symmetry. For this numerical example, the axes of vibrations have been computed and illustrated with the natural frequencies. The forced response at the objective lens is represented and its geometrical interpretation has been explained as the mutual moment between the axis of vibration and the applied wrench times the line coordinates of the axis of vibration.

  • PDF

A Study on the Ultimate Strength Analysis of Frame Structures by Idealized Structural Unit Method (이상화 구조요소법에 의한 골조구조물의 최종강도해석에 관한 연구)

  • 백점기;임화규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.28-33
    • /
    • 1990
  • This paper presents an efficient and accurate method for nonlinear analysis of frame structures by idealized structural unit method. The main idea behind the present method is to minimize the cost of the computational effort by reducing the number of unknowns. An explicit form of the tangential elastic stiffness matrix of the element is derived by using updated Lagrangian approach. An ultimate limit state of the element is judged on the basis of the formation of a plastic hinge mechanism. The elasto-plastic stiffness matrix and the post-ultimate stiffness matrix of the element are formulated by plastic node method. A comparison between the present method is very efficient and accurate because the computing time required is very small while giving the accurate solution.

  • PDF

Derivation of Exact Dynamic Stiffness Matrix for Non-Symmetric Thin-walled Straight Beams (비대칭 박벽보에 대한 엄밀한 동적 강도행렬의 유도)

  • 김문영;윤희택
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.369-376
    • /
    • 2000
  • For the general loading condition and boundary condition, it is very difficult to obtain closed-form solutions for buckling loads and natural frequencies of thin-walled structures because its behaviour is very complex due to the coupling effect of bending and torsional behaviour. Consequently most of previous finite element formulations introduced approximate displacement fields using shape functions as Hermitian polynomials, isoparametric interpoation function, and so on. The purpose of this study is to calculate the exact displacement field of a thin-walled straight beam element with the non-symmetric cross section and present a consistent derivation of the exact dynamic stiffness matrix. An exact dynamic element stiffness matrix is established from Vlasov's coupled differential equations for a uniform beam element of non-symmetric thin-walled cross section. This numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. The natural frequencies are evaluated for the non-symmetric thin-walled straight beam structure, and the results are compared with available solutions in order to verify validity and accuracy of the proposed procedures.

  • PDF

Vibraiton and Power Flow Analysis for the Branched Piping System by Wave Approach (파동접근법을 이용한 분기된 배관계의 진동 및 파워흐름해석)

  • Koo, Gyeong-Hoe;Park, Yun-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1225-1232
    • /
    • 1996
  • In this paper the vibration and power flow analysis for the branched piping system conveying fluid are performed by wave approach. The uniform straight pipe element conveying fluid is formulated using the dynamic stiffness matrix by wave approach. The branched piping system conveying fluid can be easily formulated with considering of simple assumptions of displacements at the junction and continuity conditions of the pipe internal flow. The dynamic stiffness matrix for each uniform straight pipe element can be assembled by using the global assembly technique using in conventional finite element method. The computational method proposed in this paper can easily calculate the forced responses and power flow of the branched piping system conveying fluid regardless of finite element size and modal properties.

Modified Stiffness Matrix of Frame Reflecting the Effect of Local Cracks (국부적 균열의 영향을 고려한 수정된 프레임 강성행렬)

  • 이상호;송정훈;임경훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.353-360
    • /
    • 2002
  • The objective of this study is to develop a technique that analyzes the global behavior of frame structures with local cracks. The technique is based on frame analysis and uses the stiffness matrix of cracked frame element. An algorithm proposed here analyzes a frame structure with local transverseedge cracks, considering the effects of crack length and location. Stress intensity factors are employed to calculate additional local compliance due to the cracks based on linear elastic fracture mechanics theory, and then this local compliance is utilized to derive the stiffness matrix of the cracked frame element. In order to verify the accuracy and reliability of the proposed approach, numerical results are compared with those of Finite Element Method for the cracked frame element, and the effects of single crack on the behavior of truss structure are also examined.

  • PDF

The role of softening in the numerical analysis of R.C. framed structures

  • Bontempi, Franco;Malerba, Pier Giorgio
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.785-801
    • /
    • 1997
  • Reinforced Concrete beams with tension and compression softening material constitutive laws are studied. Energy-based and non-local regularisation techniques are presented and applied to a R.C. element. The element characteristics (sectional tangent stiffness matrix, element tangent stiffness matrix restoring forces) are directly derived from their symbolic expressions through numerical integration. In this way the same spatial grid allows us to obtain a non-local strain estimate and also to sample the contributions to the element stiffness matrix. Three examples show the spurious behaviors due to the strain localization and the stabilization effects given by the regularisation techniques, both in the case of tension and compression softening. The possibility to overestimate the ultimate load level when the non-local strain measure is applied to a non softening material is shown.

Global Behavior Analysis of Frame Structures with Local Cracks (국부적 균열을 지닌 프레임 구조체의 전체적인 거동 해석)

  • Kim, Dong-Jo;Kim, Se-Jin;Kim, Hyo-Jin;Lee, Sang-Ho
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.67-70
    • /
    • 2008
  • This study is to analyzes the global behavior of frame structures with local cracks in structural members by frame analysis, using the stiffness matrix of cracked frame element. This local compliance is utilized to derive the stiffness matrix of the cracked frame element and the effects of interaction among multiple cracks are also examined. The proposed technique is applied to frame structures with local cracks. Analysis results confirm the possibility of quantitative analysis of a structure damaged with local cracks and the feasibility of the technique as a tool for analyzing the global behavior of frame structures, reflecting effects of local cracks.

  • PDF