• Title/Summary/Keyword: Stiffness Evaluation

Search Result 1,030, Processing Time 0.037 seconds

A Study on the Finite Element Modeling and Analytical Parameters for the Dynamic Stiffness Evaluation of Shipboard Equipment Foundations (선박 장비 받침대의 동강성 평가를 위한 유한요소 모델링과 해석 인자에 관한 연구)

  • Kim, Kook-Hyun;Kim, Yun-Hwan;Choi, Tae-Muk;Choi, Sung-Won;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.6
    • /
    • pp.808-812
    • /
    • 2010
  • This paper studies the finite element modeling and analytical parameters for the numerical evaluation of dynamic stiffness of large foundation for shipboard equipments such as marine diesel engine. For the purpose, numerical method and procedure to evaluate the dynamic stiffness are established based on the impact test method, which are applied for the dynamic stiffness evaluation of a real diesel generator foundation of ship. Numerical investigations compared with the measured data are carried out to evaluate the effects of modeling ranges of ship substructure, finite element sizes, lower support structures and damping coefficients. From the results, modeling and analytical parameters for proper evaluation of dynamic stiffness of large foundation of shipboard equipment are suggested.

New Evaluation and Test of Sidewall's Rotational Stiffness of Radial Tire

  • Kim Young-Woo;Kim Yong-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.748-758
    • /
    • 2006
  • In this paper, we have revisited the estimation of the rotational stiffness of sidewall of radial tire and have suggested a new method for evaluation of the rotational stiffness. Since thicknesses, and volume fractions of the constituents of sidewall are varied depending on radial position, the equivalent shear modulus of the sidewall also depends on radial position. For the estimation of rotational stiffness of sidewall's rubber, we have divided its cross-section into sufficient numbers of small parts and have calculated the equivalent shear modulus of each part of sidewall. Using the shear moduli of divided parts, we have obtained the rotational stiffness by employing in-plane shear deformation theory. This method is expected to be a useful tool in tire design since it relates such basic variables to the global stillness of tire. Applying the calculation method to a radial tire of P205/60R15, we have compared its rotational stiffness with experimental one.

Evaluation on the condition and quality of railway track substructure (궤도노반의 상태 및 품질평가에 관한 연구)

  • Kim, Dae-Sang;Park, Tae-Soon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.346-353
    • /
    • 2005
  • Track substructure(ballast, subgrade) should have sufficient strength and adequate stiffness to fully support track superstructure(rail, fastener, sleeper). Vertical support stiffness of track comes from the sufficient thickness, adequate strength and stiffness of material of substructure layers. Since the vertical support stiffness of track substructure is closely related with the track geometry, the evaluation of the stiffness is very important to understand the track states. This paper introduces the system, which are composed of Ground Penetrating Radar(GPR), Portable Ballast Sampler(PBS), and Light Falling Weight Deflectometer(LFWD), to evaluate substructure condition and summarizes the field test results performed with the reliable system.

  • PDF

A Study on the Static and Dynamic Stiffness Evaluation of a High Speed Mold/Die Machining Center Structure (고속 금형가공센터 구조물의 강성평가에 관한 연구)

  • 최영휴;강영진;차상민;김태형;박보선;최원선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.102-106
    • /
    • 2003
  • An experimental modal analysis and dynamic stiffness evaluation of a moving body structure of a high speed machining center are presented in this paper. The natural frequencies and corresponding modes, and dynamic compliance of a moving body structure of high speed machining center are investigated by using F.E.M., hydraulic exciter test, and impulse hammer test. The lowest three natural frequencies were found to be 56.6 Hz, 112.7 Hz, and 142.7 Hz by FEA respectively, while those were 55 Hz, 112 Hz, 131 Hz by experimental analysis. Furthermore, both computed and measured absolute dynamic compliances of the moving body structure in iso-direction showed good agreement especially at the first two mode frequencies. With our experimental data, the dynamic characteristics of the machining center can be exploited to get a new development of structural dynamic design and modification.

  • PDF

Structural Behavior Characteristics Evaluation of Shear Wall Outrigger System Subject to Horizontal Loads (수평하중을 받는 전단벽 아웃리거 시스템의 거동특성 평가)

  • Kim, Ho-Soo;Lee, Han-Joo;Hong, Seok-Il;Lim, Young-Do
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.110-117
    • /
    • 2006
  • This study presents an effective stiffness-based optimal technique to consider floor rigid diaphragm action and a technique to evaluate the structural behavior characteristics and efficiency for tall shear wall outrigger system subject to horizontal loads. To this end, isoparametric plane stress element with rotational stiffness is used for shear wall element and stiffness gradient is calculated. Also, the approximation concept to solve effectively the large scaled problems, member grouping technique and resizing technique are considered. To verify the effectiveness and usefulness of this technique, the efficient evaluation method for three types of 50 story model with core and outrigger system is presented.

  • PDF

Evaluation on the Condition of Track Substructure Using GPR/PBS/LEWD (GPR/PBS/LFWD를 이용한 궤도하부 상태평가)

  • Kim Dae-Sang;Hwang Seon-Keun;Shin Min-Ho;Park Tae-Soon
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.163-170
    • /
    • 2005
  • Track substructure (ballast, subgrade) should have sufficient strength and uniform stiffness to fully support track superstructure (rail, fastener, sleeper). Vertical support stiffness of track is strongly influenced by the condition of ballast and subgrade layers. Therefore, the evaluation of the condition of track substructure is very important to evaluate the vertical support stiffness of track. This paper proposes the trackbed evaluation system, which is composed of Ground Penetrating Radar (GPR), Portable Ballast Sample. (PBS), and Light Falling Weight Deflectomete. (LFWD), to diagnose track substructure. The laboratory and field tests are performed to evaluate the applicability of the proposed trackbed evaluation system.

A Experimental Study on the Stiffness Characteristics of Elastomeric Bearings (탄성받침의 강성특성에 대한 실험연구)

  • Yoon, Hyejin;Cho, Changbeck;Kim, Youngjin;Kwahk, Imjong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.475-485
    • /
    • 2008
  • This paper intends to enhance the reliability and performance of domestic elastomeric bearings through the proposal of directions for the improvement of their stiffness regard to the Korean industrial standard KS F 4420 relative to the evaluation of design/fabrication/quality. Therefore, comparative analysis of the compressive elastic modulus, stiffness measurement method and performance evaluation method of KS F 4420 with those of Eurocode, Japanese bearing manual, and ISO code was performed, and measurement tests on the compressive stiffness and shear stiffness of common elastomeric bearings produced in Korea were conducted. The experimental results reveal that differences of about 20% and 13% occurred respectively for the compressive stiffness and shear stiffness according to the definition adopted for the stiffness. The measured values for the stiffness of the domestic elastomeric bearings were also verified to exhibit large deviation from the formula proposed by KS F 4420. Elastomeric bearings that does not have appropriate compressive stiffness required at the design can result in uneven deflection at supports of bridges and excessive stress in girders. Accordingly, the establishment of compressive elastic modulus formula and performance evaluation criteria fitted to the domestic circumstances through the execution of performance evaluation of bearings presenting diversified shapes and shape factors appears to be necessary for the domestic bearings to meet the performance required in design.

Stiffness Evaluation of Steel Beam-to-Column Joints Using Component method (Component method를 이용한 철골 보-기둥 죠인트의 강성평가)

  • 양철민;조지은;김영문
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.243-250
    • /
    • 2004
  • This paper reports on the evaluation of the initial stiffness of steel joints using component method as well as experimental tests. The so-called component method corresponds precisely to a simplified mechanical model composed of extensional springs and rigid links, whereby the joint is simulated by an appropriate choice of rigid and flexible components. An application to a cantilever beam-to-column steel joint is presented and compared to the experimental results obtained under cyclic loading condition. Comparison between numerical and experimental results allows to conclude that the numerical model is able to simulate, with a good level of accuracy for initial stiffness, the behaviour of beam-to-column joints.

  • PDF

A Fundamental Study on the Effects of Pavement Stiffness to the Structural Behavior of Orthotropic Steel Plate Deck (포장체의 강성이 강상판의 거동에 미치는 영향에 관한 기초연구)

  • Lee, Hwan-Woo;Jung, Du-Hwoe
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.191-198
    • /
    • 2003
  • The pavement stiffness is scarcely used in structural analysis to design the superstructure of bridge. It is reasonable not to consider it in the case of asphalt concrete pavement over concrete deck because the pavement stiffness compared with the concrete deck plate can be ignored. However, sometimes, the pavement materials have a similar amount of elastic modulus to concrete and are applied to the orthotropic steel deck plate which has relatively less stiffness compared with the concrete deck plate. In this paper, the steel plate deck of a real bridge project was analyzed by considering the pavement stiffness by linear elastic FEM. It was assumed that a perfect bond between the steel plate deck and the pavement exited. The results indicated that the structural behavior of the orthotropic steel deck plate can be estimated enough to affect the evaluation result of structural capacity in some cases. Therefore, the investigations by experimental tests and more advanced numerical model are indispensible in figuring the design formula for considering the effects of pavement stiffness in the structural analysis of an orthotropic bridge.