• Title/Summary/Keyword: Stiffened effect

Search Result 148, Processing Time 0.031 seconds

Strength Analysis of Eccentrically Stiffened Plates by Finte Element Method (편심(偏心) 보강평판(補强平板)의 강도(强度) 해석(解析))

  • C.Y.,Kim;J.B.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.17 no.4
    • /
    • pp.1-11
    • /
    • 1980
  • Stiffened plates are commonly used as a component of ship's structures. Most frequently symmetrically stiffened plates are used, but some of stern structures and any specified parts are often constructed with eccentrically stiffened plates. The problems of these eccentrically stiffened plates have been studied rarely, and the results of eccentricity effect of eccentrically stiffened plates are not available. This paper deals with the analysis of eccentrically stiffened plates in the linear elastic range. The derivation of the stiffness matrix was carried out by finite element method for which the isoparametric element was adopted. To show the effect of eccentricity, the deflection at the center under the uniformly distributed and the concentrated load of simply supported and clamped plate models are computed respectively in accordance with the eccentricity of the stiffener. As shown in the results of computations, the eccentricity effect of concentrated load case is greater than that of distributed load case and that of simply supported boundary condition is greater than that of clamped boundary condition. The higher eccentricity of stiffener is, the smaller the effect of stiffener becomes, therefore scantling of eccentrically stiffened plates should be considerably greater than those of symmetrically stiffened plates.

  • PDF

Stress concentration factors in tubular T-joints stiffened with external ring under axial load

  • Hossein Nassiraei;Pooya Rezadoost
    • Ocean Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.43-55
    • /
    • 2023
  • In this study, the SCFs in tubular T-joints stiffened with external ring under axial load are studied and discussed. After verification of the present numerical model with the results of several available experimental tests, 156 FE models were generated and analyzed to parametrically evaluate the effect of the joint geometry and the ring geometry on the SCFs. Results indicated that the SCF of the stiffened T-joints at crown point can be down to 24% of the SCF of the corresponding un-reinforced joint at the same point. Also, the effect of the ring on the SCF at saddle point is more remarkable than the effect of the ring on the SCF at crown point. Moreover, against un-reinforced joints under axial load, the SCF at saddle point of the stiffened joint is smaller than the SCF at crown point of that stiffened joint. The ring results in the redistribution of stresses in the ring and metal substrate. Also, the effect of the ring thickness on the decrease of the SCFs is slight and can be ignored. In final step, the geometric parameters affecting the SCFs of the stiffened T-joints are analyzed by multiple nonlinear regression analyses. An accurate formula is proposed for determining the SCFs.

Analysis of fatigue Crack Growth Behavior in the Integrally Stiffened Panels Subjected to Single Overload (과하중을 받는 일체형 보강판의 피로균열 성장거동 해석)

  • 이환우;서정호
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.28-34
    • /
    • 2004
  • It is well known that tensile peak overloads may significantly delay suubsequent constant amplitude fatigue crack growth in many materials. Since real structures are usually subjected to complex load histories, the ability to predict accurate crack growth under realistic service conditions is of major engineering interest. This paper describes experiments on fatigue track growth in the integrally stiffened panel of 7075-T6 aluminum alloy. The effect of shape parameters and overload position on the fatigue crack growth behavior of integrally stiffened panels are discussed. Based on the experimental results, the following conclusions have been drawn: the overall fatigue crack growth retardation resulting from single overload in the stiffened panels was generally larger in the larger thickness ratio, although the retardation trends, according to the change in overload positions, were similar to those exhibited in the non-stiffened panels.

Effect of the height of SCSW on the optimal position of the stiffening beam considering axial force effect

  • Azar, B. Farahmand;Hadidi, A.;Khosravi, H.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.2
    • /
    • pp.299-312
    • /
    • 2012
  • Stiffened coupled shear walls (SCSW) are under axial load resulting from their weight and this axial load affects the behavior of walls because of their excessive height. In this paper, based on the continuum approach, the optimal position of the stiffening beam on the stiffened coupled shear walls is investigated considering the effect of uniformly distributed axial loads. Moreover, the effect of the height of stiffened coupled shear walls on the optimal position of the stiffening beam has been studied with and without considering the axial force effect. A computer program has been developed in MATLAB and numerical examples have been solved to demonstrate the reliability of this method. The effects of the various flexural rigidities of the stiffening beam on the internal forces and the lateral deflection of the structure considering axial force effect have also been investigated.

Effect of stiffened element and edge stiffener in strength and behaviour of cold formed steel built-up beams

  • Manikandan, P.;Sukumar, S.
    • Advances in Computational Design
    • /
    • v.1 no.2
    • /
    • pp.207-220
    • /
    • 2016
  • The aim of this study is to investigate the effect of stiffened element and edge stiffener in the behaviour and flexural strength of built-up cold-formed steel beams. An experimental and analytical analysis of CFS channel sections in four different geometries is conducted, including simple channel sections, a stiffened channel section with or without edge stiffeners. Nonlinear finite element models are developed using finite element analysis software package ANSYS. The FEA results are verified with the experimental results. Further, the finite element model is used for parametric studies by varying the depth, thickness, and the effect of stiffened element, edge stiffener and their interaction with compression flanges on stiffened built-up cold-formed steel beams with upright edge stiffeners. In addition, the flexural strength predicted by the finite element analysis is compared with the design flexural strength calculated by using the North American Iron and Steel Institute Specifications for cold-formed steel structures (AISI: S100-2007) and suitable suggestion is made.

Effect of Initial Shape Imperfection and Residual Stress on the Ultimate Strength of Ring-Stiffened Cylinders under Hydrostatic Pressure (수압을 받는 원환보강원통의 최종강도에 대한 초기 형상결함과 잔류응력의 영향)

  • 조상래;김승민
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.139-143
    • /
    • 2001
  • Ring-stiffened cylinders are widely used as the pressure hull of submarines and underwater vehicles. For large ring-stiffened cylinders cylindrical shells are fbricated by cold rolling of flat plates and then welding of curved shells. After forming cylinders ring-stiffeners are welded on th the cylinders. Due to these cold roiling and welding initial shape imperfections and residual stresses exists in fabricated ring-stiffened cylinders. It is well known that the initial shape and material imperfections affect the ultimate strength of ring-stiffened cylinders significantly. In this paper previous researches on the effects of initial shape imperfections and residual stresses are briefly reviewed Recently a numerical analysis computer program was developed to predict the ultimate strength of ring-stiffened cylinders subjected to hydrostatic pressure, which is based on the Dynamic Relaxation technique. This program was employed to numerically investigate those effects. The numerical predictions were substantiated with relevant experimental results.

  • PDF

Dynamic Behavior Analysis of Stiffened Cylindrical Shell Filled with Fluid (내부가 유체로 채워진 보강원통쉘의 동적거동 해석)

  • Youm, Ki-Un;Yoon, Kyung-Ho;Lee, Young-Shin;Kim, Jong-Kiun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2875-2886
    • /
    • 1996
  • This work present the experimental resutls for the free vibration of unstiffened, stiffened cylindrical shell filled with air, half water and full water. The natural frequencies and mode shapes of unstiffened, stiffened cylindrical shell are obtained experimentally also. The natural frequencies of stiffened cylindrical shell were generally highter than those of unstiffened cylindrical shell and natural requencies were decreased as cylindrical shell was filled with water. The effect of circumferential stiffener in the first mode was shown that natural frequency more increased 25% at air environment, 29% at half water environment and 37% at full water than those of unstiffened cylindrical shell, respectively. Also, the natural frequencies were decreased according to the added mass effect of fluid in the shell of unstiffened and stiffened cylindrical shell. The six mode shape results of all cases are simular and given. The natural frequencies are determined for a wide range of parameters : e.g. unstiffened shell, and filled with air, half and full water. The effects of varying the parameters on the free vibration frequencies and mode shapes are discussed.

An Study on the Stiffened Effect of K-type Tubular Connection (강관 K형 접합부의 보강효과에 관한 연구)

  • Kim, Woo Bum;Lee, Young Jung;Kim, Kap Sun;Chung, Soo Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.6
    • /
    • pp.609-619
    • /
    • 2001
  • It is almost impossible to evaluate the ultimate strength theoretically, because the behavior of Gusset-Tube connection stiffened with rib-plate is considerably complicate. Therefore in this study a finite element model of gusset-tube connection stiffened with rib-plate was established. The validity of finite element analysis was examined through comparing with previous experimental result and the behavior and strength of the connection was examined. From the parametric study considering lateral force ratio, eccentricity, gusset length based on finite element model, the stiffened effect was estimated and stiffening method was proposed.

  • PDF

Stabilities of cable-stiffened cylindrical single-layer latticed shells

  • Li, Pengcheng;Wu, Minger
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.591-602
    • /
    • 2017
  • A cable-stiffened cylindrical single-layer latticed shell that is reinforced by cable-stiffened system has superior stability behaviour compared with the ordinary cylindrical latticed shell. The layouts of cable-stiffened system are flexible in this structural system, and different layouts contribute different stiffness to the structure. However, the existed few research primarily focused on the simplest type of cable layouts, in which the grids of the latticed shell are diagonally stiffened by prestressed cables in-plane. This current work examines the stability behaviour of the cable-stiffened cylindrical latticed shells with two different types of cable layouts using nonlinear finite element analysis. A parametric study on the effect of cross-sectional of the cables, pretension in cables, joint stiffness, initial imperfections, load distributions and boundary conditions is presented. The findings are useful for the reference of the designer in using this type of structural system.

Ultimate Strength Analysis of Stiffened Plate with Minor Collision Damage (작은 충돌손상을 가진 보강판의 최종강도 해석)

  • Lee, Tak-Kee;Rim, Chae-Whan
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.34-37
    • /
    • 2007
  • The safety of ships is one of the most important concerns in terms of the environment and human life. A ship in bad condition is likely to be subject to accidents, such as collision and grounding. When a ship has minor collision damages in the form of circle or ellipse, its ultimate strength will be reduced. It is important to evaluate the reduction ratio of a ship's ultimate strength that results from damages. The strength reduction of a plate with a cutout in the form of hole has been treated by many researchers. A closed-form formula for the reduction of ultimate strength of a plate, considering the effect of several forms of cutout, has been suggested. However, the structure of ships is composed of plates and stiffeners so-called stiffened plates and it is likely that plates and stiffeners will be damaged together in collisions. This paper investigates the effect of minor collision damages on the ultimate strength of a stiffened plate by using numerical analysis. For this study, the deformed shape of minor collision damages on a stiffened plate was made by using a contact algorithm and was used as the initial shape for ultimate stress analysis. Then, a series of nonlinear FE analyses was conducted to investigate the reduction effects on the ultimate strength of the stiffened plate. The boundary conditions were simply supported at all boundaries, and the tripping of stiffener was neglected. The results are presented in the form of reduction ratio between the ultimate strength of an original, intact stiffened plate and that of a damaged stiffened plate.