• Title/Summary/Keyword: Sticking plate

Search Result 12, Processing Time 0.019 seconds

Solid Lubrication Optimization and Structural Design of 17cc Automotive Compressor (17cc급 자동차용 압축기의 고체윤활 최적화 및 구조 설계에 관한 연구)

  • Yang, Yong-Kun;Qin, Zhen;Choi, Yeo-Han;Lyu, Sungki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.56-61
    • /
    • 2020
  • Fuel economy has always been a major issue in the automobile industry, especially owing to the associated environmental concerns. It is widely known that only 5-20% of the energy generated by automobiles running on internal combustion engine engines is used as power, while the rest is consumed because of friction between components. The main components of the reciprocating piston type compressor used in vehicles, such as the shaft, swash plate, piston, and cylinder, cause severe energy loss owing to frictional contact between each other. The wear contact between the main shaft and the other components is particularly severe. Most quality issues arise owing to the sticking phenomenon that occurs between these parts. In this study, a coating solution to reduce friction is prepared by mixing adhesive solid lubricant, organic binder-polyadimide, inorganic binder (Binder), and graphite in four different ratios, and the best combination is determined.

Stick-slip Characteristics of Magnetorheological Elastomer under Magnetic Fields (자기장에 따른 자기유변탄성체의 스틱 슬립 현상 연구)

  • Lian, Chenglong;Lee, Kwang-Hee;Kim, Cheol-Hyun;Lee, Chul-Hee;Choi, Jong Myoung
    • Tribology and Lubricants
    • /
    • v.31 no.1
    • /
    • pp.6-12
    • /
    • 2015
  • This paper investigates the stick-slip characteristic of magnetorheological elastomer (MRE) between an aluminum plate and the surface of the MRE. MRE is a smart material and it can change its mechanical behavior with the interior iron particles under the influence of an applied magnetic field. Stick-slip is a movement of two surfaces relative to each other that proceeds as a series of jerks caused by alternate sticking from friction and sliding when the friction is overcome by an applied force. This special tribology phenomenon can lead to unnecessary wear, vibration, noise, and reduced service life of work piece. The stick-slip phenomenon is avoided as far as possible in the field of mechanical engineering. As this phenomenon is a function of material property, applied load, and velocity, it can be controlled using the characteristics of MRE. MRE as a soft smart material, whose mechanical properties such as modulus and stiffness can be changed via the strength of an external magnetic field, has been widely studied as a prospective replacement for general rubber in the mechanical domain. In this study, friction force is measured under different loads, speed, and magnetic field strength. From the test results, it is confirmed that the stick-slip phenomenon can be minimized under optimum conditions and can be applied in various mechanical components.