• Title/Summary/Keyword: Stick Motion

Search Result 79, Processing Time 0.029 seconds

A Comparision of Flick Shooting Motion in Penalty Corner between High School and National Players in Field Hockey (하키 페널티 코너 시 고등학교 선수와 국가대표 선수간의 플릭슈팅 동작 비교)

  • Kim, Ho-Mook;Woo, Sang-Yeon;Kim, Ki-Un
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.3
    • /
    • pp.499-508
    • /
    • 2009
  • The purpose of this study was to compare and analyze flick shooting motion in penalty corner between high school players and national players in field hockey. Five high school players and six national players participated in this study. The 3D kinematic data were collected for each subject performing the penalty corner stroke. The results of the study were as follows: 1) The national players had higher stick head and ball velocity than the high school players. 2) The forward length between ball and support foot during ball catching with stick head was longer in the national players than the high school players. 3) At the Z axis of the E5 event, the center of gravity of the national players was lower than that of the high school players. 4) At the Z axis of the E5 event, left hip angle of the national players was lower than that of the high school players. 5) The national players had longer drag length of ball than the high school players. 6) The national players had higher hand and lower arm angular momentum than the high school players.

EXPERIMENT OF CONCRETE FLOOR FINISHING ROBOT

  • Woo, Kwang-Sik;Lee, Ho-Gil;Kim, Jin-Young;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1480-1484
    • /
    • 2004
  • In this paper, a self-propulsive and small concrete floor finishing trowel robot with twin trowels is proposed. Due to the small size and omni-directional moving capability, it is adequate for small space such as apartment. By adjusting the posture of trowels, it can move in any direction without wheels. We used cheap PIC processor for the cost saving design of the modules and adopted mode processors for easy operation of control stick. For the position control of the robot, we made a motion control algorithm appealing to the stepping motor driver module and the wireless communication module between the robot and PC (or control stick). In this paper, we discuss the control problem of the floor finishing robot in order to move to the right position. By comparing experimental result with simulation, we show the validity of the robot mechanism, sensors, and the control system.

  • PDF

Vibration Simulation Using LuGre Friction Model for Cladding Tube Fretting Wear Analysis (피복관 프레팅마모 해석을 위한 LuGre 마찰모델 성능 고찰)

  • Park, Nam-Gyu;Kim, Jin-Seon;Kim, Joong-Jin;Kim, Jae-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.55-62
    • /
    • 2016
  • Nuclear fuels are always exposed to hot temperature and high speed coolant flow during the reactor operation. Thus the fuel rod accompanies small amplitude vibration due to the turbulent flow. The random vibration causes friction between the fuel rod and the grid structure which provides the lateral supports. The friction is critical to the fuel rod fretting wear, and it degrades fuel performance when a severe wear is developed. LuGre friction model is introduced in the paper, and the performance was evaluated comparing to the classical Coulomb model. It is shown that the developed friction force considering the Coulomb friction is not enough to stop or delay the motion while the stick-slip can be simulated using LuGre friction model. Numerical solutions of the two dimensional spacer grid cell model with the modern friction are also reviewed, and it is discussed that the new friction model simulates well the nonlinear mechanism.

Study on Influence of Spring Constant on Frictional Behavior at the Nanoscale through Molecular Dynamics Simulation (나노스케일 마찰거동에서 스프링 상수가 마찰에 미치는 영향에 대한 분자동역학 연구)

  • Kang, Won-Bin;Kim, Hyun-Joon
    • Tribology and Lubricants
    • /
    • v.37 no.2
    • /
    • pp.77-80
    • /
    • 2021
  • In this study, we investigated the effect of the spring constant on frictional behavior at a nanoscale through molecular dynamics simulation. A small cube-shaped tip was modeled and placed on a flat substrate. We did not apply the normal force to the tip but applied adhesive force between the tip and the substrate. The tip was horizontally pulled by a virtual spring to generate relative motion against the substrate. The controlled spring constant of the virtual spring ranged from 0.3 to 70 N/m to reveal its effect on frictional behavior. During the sliding simulation, we monitored the frictional force and the position of the tip. As the spring constant decreased from 70 to 0.3 N/m, the frictional force increased from 0.1 to 0.25 nN. A logarithmic relationship between the frictional force and spring constant was established. The stick-slip instability and potential energy slope increased with a decreasing spring constant. Based on the results, an increase in the spring constant reduces the probability of trapping in the local minima on the potential energy surface. Thus, the energy loss of escaping the potential well is minimized as the spring constant increases.

Atomic motion and spatial distribution of 87Rb by Coordinate-dependent asymmetry radiation force in MOT (MOT에서 좌표의존 비대칭 광압에 의한 루비듐 원자의 운동과 원자 구름 분포)

  • 박성종
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.4
    • /
    • pp.221-226
    • /
    • 2000
  • We observed the spatial distributions of atom in a magneto-optical trap. These distributions include sphere, stick, ring, ring with core, sphere-sphere, sphere-ring etc. Coordinate-dependent asymmetry radiation force (CDARF) that arises due to laser beams misalignment and transverse profile of the laser beams is exerted on atoms, and the shape of trapped cloud is changed with the misalignment parameter. We use equations of motion that takes into account the Zeeman sublevels of the 87Rb atom, magnitude and direction of magnetic field, polarization of trapping lasers, and transverse profile of the laser beams. A theoretical analysis of the equation of motion for the trapped atom explained all the experimental observations.

  • PDF

Experimental Study for Optimizing the Acceleration of AC Servomotor Using Finite Jerk

  • Chung, Won-Jee;Kim, Sung-Hyun;Hwan, Park-Myung;Su, Shin-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.604-609
    • /
    • 2005
  • This paper presents an experimental study for optimizing the acceleration of AC servomotor using finite jerk (the first derivative of acceleration). The acceleration optimization with finite jerk aims at generating the smooth velocity profile of AC servomotor by experimentally minimizing vibration resulted from the initial friction of servomotor. The stick-slip motion of AC servomotor induced by initial friction can result in the positional errors that are not good for high-precision devices such as the assembly robot arms to be used in a 300mm wafer or a LCD (Liquid Crystal Display) stocker system. In this paper, experiments were made by using a PM (Permanent Magnet) type AC servomotor with MMC(R) (Multi Motion Controller) programmed in Visual C++(R). The experiments have been performed for finding the optimal duration time of finite jerk in terms of the minimization of vibration displacements when both the magnitude of velocity and the allowable acceleration are given. We have compared the proposed control with the conventional control with trapezoidal velocity profile by measuring vibration displacements. The effectiveness of the proposed control has been verified in that the experimental results showed the decrease of vibration displacement by about 24%.

  • PDF

Effect of ground motion characteristics on the pure friction isolation system

  • Nanda, Radhikesh P.;Shrikhande, Manish;Agarwal, Pankaj
    • Earthquakes and Structures
    • /
    • v.3 no.2
    • /
    • pp.169-180
    • /
    • 2012
  • The performance of pure friction isolation system with respect to the frequency bandwidth of excitation and the predominant frequency is investigated. A set of earthquake ground motions (artificial as well as recorded [with different combinations of magnitude-distance and local site geology]) is considered for investigating effectiveness of pure friction isolators. The results indicate the performance of pure friction base isolated system does not only depend upon coefficient of friction and mass ratio but the stick-slip behaviour depends upon the frequency content of the excitation as well. Slippage prevails if the excitation frequency lies in a suitable frequency range. This range widens with increasing mass ratio. For larger mass ratios, the sliding effect is more pronounced and the maximum acceleration response is further reduced in the neighbourhood of frequency ratio (${\omega}/{\omega}_n$) of unity. The pure friction isolation system is effective in the case of broadband excitations only and that too, in the acceleration sensitive range of periods. The pure friction system is not effective for protection against narrow band motions for which the system response is quasi-periodic.

Microparticle Impact Motion with Adhesion and Frictional Forces (부착력과 마찰력이 개재된 마이크로 입자 충돌 운동)

  • Han, In-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1698-1708
    • /
    • 2002
  • The main topic covered in this paper is that of the impact process, that is, where two bodies come into contact and rebound or stick together. This paper presents how to determine the rebound velocities of a microparticle that approaches a surface with arbitrary initial velocities and relate the impact process to the physical properties of the materials and to the adhesion force. Actual adhesion forces demonstrate a significant amount of energy dissipation in the form of hysteresis, and act generally in a normal to the contact surfaces. Microparticles must also contend with forces tangent to the contact surfaces, namely Coulomb dry friction. The developed model has an algebraic form based on the principle of impulse and momentum and hypothesis of energy dissipation. Finally, several analyses are carried out in order to estimate impact parameters and the developed analytical model is validated using experimental results.

Nonlinear Friction Compensator Design for Mechatronics Servo Systems Using Neural Network

  • Chung, Dae-won;Nobuhiro Kyra;Hiromu Gotanda
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.111-116
    • /
    • 2001
  • A neural network compensator for stick-slip friction phenomena in meashartonics servo systems is practically proposed to supplement the traditionally available position and velocity control loops for precise motion control. The neural network compensa-tor plays the role of canceling the effect of nonlinear slipping friction force. It works robustly and effectively in a real control system. This enables the mechatronics servo systems to provide more precise control in the digital computer. It was confirmed that the con-trol accuracy is improved near zero velocity and points of changing the moving direction through numerical simulation. However, asymptotic property on the steady state error of the normal operation points is guaranteed by the integral term of traditional velocity loop controller.

  • PDF

Development of an Automatic Sorting System Driven by Friction Force

  • Ko, Min-Seok;Lee, Jeong-Wook;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.90.5-90
    • /
    • 2002
  • In this research, we are trying to develop an automatic sorting system, which is mostly affected by frictional forces between a veneer and plank. So we will make a suitable dynamic model and mechanism to control the velocity feedback. We will suggest stick-slip motion model which can predict the stability behavior of this system. The control system has a feedback loop, in which the following operations are included. A kind of sensor can get the velocity of the mass to adhesive veneer. The output of result signal should be passed to a filter, then to a phase shifter, which applies an adjustable phase-shift, to a variable-gain amplifier. A shaker will be attached to the mass, which ex...

  • PDF