• Title/Summary/Keyword: Steroidogenic factors

Search Result 9, Processing Time 0.027 seconds

Expression of Fas and TNFR1 in the Luteal Cell Types Isolated from the Ovarian Corpus Luteum

  • Kim, Minseong;Lee, Sang-Hee;Lee, Seunghyung;Kim, Gur-Yoo
    • Biomedical Science Letters
    • /
    • v.25 no.1
    • /
    • pp.107-112
    • /
    • 2019
  • The corpus luteum (CL) is composed to various cells, such as luteal steroidogenic cells (LSCs), luteal thecal steroidogenic cells (LTCs), luteal endothelial cells (LECs), fibroblast, immune cells and blood cells. The life span of CL is controlled by proliferation and apoptosis of luteal cells. Therefore, this study investigated apoptotic factors in luteal cells derived from bovine CL. The CL tissues were collected from bovine ovaries and luteal cells were isolated from middle phase CL. Then, LTCs and LECs were separated according to cellular morphology from LSCs. The expression of Bax, Bcl-2, Fas and tumor necrosis factor 1 receptor (TNF1R) mRNA and protein were analyzed using quantitative RT-PCR and western blot. Results show that, Bax and TNFR1 mRNA expression were significantly increased at late group than early and middle groups, otherwise Bcl-2 were significantly decreased at late group than early group (P<0.05). Fas mRNA expression were significantly decreased in middle group compared to early and late groups (P<0.05). In addition, Bax and Bcl-2 mRNA in LTCs was lower than LSCs, Fas mRNA was higher than LSCs. The Bcl-2 protein expression was lower at LTCs than LSCs, especially Fas protein in LTCs was significantly lower than LSCs and LECs (P<0.05). Otherwise, TNFR1 protein of LTCs were similar with LSCs but higher compared with LECs. In conclusion, we suggest that the results may help understanding of apoptosis ability in luteal cells according to cell type during CL regression of estrous cycle.

Expression of Steroidogenesis-related Genes in Rat Adipose Tissues

  • Byeon, Hye Rim;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.20 no.3
    • /
    • pp.197-205
    • /
    • 2016
  • Adipose tissue is one of the major endocrine gland. More recently, local production of steroids in adipocytes differentiated from mouse 3T3-L1 cell-line was reported. We hypothesized that rat adipocytes have steroidogenic machinery and the expression patterns of the components might be differentially regulated, depending on the distribution and sex. To verify this hypothesis, we collected the adipose tissues depot-and sex-specifically at postnatal day (PND) 30, and performed quantitative RT-PCRs. In overall aspects, the abundances of the transcripts were lower in the brown adipose of both sexes. $3{\beta}-HSD$ transcript levels in female abdominal and reproductive adipose, CYP17 transcript levels in female reproductive adipose, $17{\beta}-HSD$ transcript levels in female abdominal and reproductive adipose, and CYP19 transcript levels in female abdominal adipose were significantly lower than those of male counterparts. Similar to steroidogenic factors, the abundance of the $ER-{\alpha}$ transcripts were generally lower in the brown adipose of both sexes. $ER-{\beta}$ transcripts were more abundant in male white adipose depots than their female counterparts. The levels of LHR transcripts in female reproductive adipose were significantly higher than those of male counterpart. In conclusion, our study demonstrated that the expressions of steroidogenesis-related genes were depot- and sex-specifically occurred in the immature male and female rat adipose tissues. Our study suggested that the adipose tissues are not only targets but de novo synthesizing sites of sex steroid(s), though the synthesizing activities could be much less than in gonads. Further researches in this field will be helpful for understanding the adipose physiology and for medical application such as sex-specific steroid supplement therapies for older populations.

Testicular Cycles in the Korean Frogs: Annual Spermatogenic Patterns, Seasonal Changes in the Steroidogenic Competence, and Responsiveness Gonadotropins in vitro

  • Go, Seon-Gun;Gang, Hae-Muk;Kim, Jeong-U;Gwon, Hyeok-Bang
    • Animal cells and systems
    • /
    • v.1 no.1
    • /
    • pp.99-105
    • /
    • 1997
  • Using three species of Korean frogs (Rana dybowskii, R. rugosa and R. nigromaculata), the annual spermatogenic pattern, the seasonal changes in the steroidogenic competence, and responsiveness of testis to gonadotropins in terms of testosterone secretion in vitro were examined. The spermatogenic pattern of R. dybowskii was classified as a discontinuous type since spermatogenesis stops completely after spawning in late winter (February) until mid-summer (July). In contrast, the pattern of R. nigromaculata and R. rugosa was classified as a potent continuous type since sperm was always present in the seminiferous tubules all year round. In all three species, the levels of testicular testosterone and that of testosterone secreted by testis following in vitro culture were very low in late summer (August), but increased thereafter until winter (hibernation period). Interestingly, responsiveness of testis in vitro to gonadotropins in terms of testosterone secretion increased markedly in November (early hibernation period). Specifically, bullfrog LH was more effective than FSH in stimulating the secretion of testosterone by frog testis in vitro during hibernation period. This fact suggests that testosterone secretion by testis during hibernation is at least regulated by the pituitary gonadotropin rather than environmental factors. Taken together, the data presented here suggest that testicular cycles of three species of Korean frogs are closely linked to their females breeding cycles, and are eventually controlled by various environmental cues.

  • PDF

Role of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Ovarian Function and Their Importance in Mammalian Female Fertility - A Review

  • Castro, Fernanda Cavallari de;Cruz, Maria Helena Coelho;Leal, Claudia Lima Verde
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.8
    • /
    • pp.1065-1074
    • /
    • 2016
  • Growth factors play an important role during early ovarian development and folliculogenesis, since they regulate the migration of germ cells to the gonadal ridge. They also act on follicle recruitment, proliferation/atresia of granulosa cells and theca, steroidogenesis, oocyte maturation, ovulation and luteinization. Among the growth factors, the growth differentiation factor 9 (GDF9) and the bone morphogenetic protein 15 (BMP15), belong to the transforming growth factor beta (TGF-${\beta}$) superfamily, have been implicated as essential for follicular development. The GDF9 and BMP15 participate in the evolution of the primordial follicle to primary follicle and play an important role in the later stages of follicular development and maturation, increasing the steroidogenic acute regulatory protein expression, plasminogen activator and luteinizing hormone receptor (LHR). These factors are also involved in the interconnections between the oocyte and surrounding cumulus cells, where they regulate absorption of amino acids, glycolysis and biosynthesis of cholesterol cumulus cells. Even though the mode of action has not been fully established, in vitro observations indicate that the factors GDF9 and BMP15 stimulate the growth of ovarian follicles and proliferation of cumulus cells through the induction of mitosis in cells and granulosa and theca expression of genes linked to follicular maturation. Thus, seeking greater understanding of the action of these growth factors on the development of oocytes, the role of GDF9 and BMP15 in ovarian function is summarized in this brief review.

Mechanism of Follicular Atresia: (I) Morphological and Functional Changes (난포의 폐쇄기작:(I) 형태적, 기능적 변화)

  • 유용달
    • Journal of Embryo Transfer
    • /
    • v.5 no.1
    • /
    • pp.1-20
    • /
    • 1990
  • Follicular atresia is a universal and characteristic phenomenon of both non-mammalian and mammalian vertebrates. Generally it is estimated that greater than 99% of follicles become atretic in higher domestic animals and human. The number of selected follicles developing to the preovulatory stage are thus fewer. Follicles can become atretic at any stage of development. The previous studies emphasized on descriptive and retrospect aspects of a limited population of the fully grown preovulatory follicle. The main efforts in ovarian physilogical researches are focused on follicular development culminating in ovulation but recent advances have resulted in a better understanding of atresia. Nowadays, recent studies are concentrated on the induction of atresia in a selected population of follicles and of the associated cellular, endocrine, biochemical and molecular changes. The factors initiating atresia and follicle selections are worthy of investigations. Another intriguing question is whether one can predict when a follicle will become atretic, i.e., what biochemical markers indicate that a follicle is destined for atresia. It is generally agreed that atretic process may vary even in antral follicles at different stages of their differentiations and among species. The dicisive factors are follicular responsiveness and the hormonal milieu. Some generalizations can be made on the basis of experimental induction of atresia. Alteration of the pattern of follicular steroid production is associated with the initiation stage of atretic process. Atresia appears to be a process unfolding gradually and affecting progressively in increasing number of functions and components of the follicle. The oocyte may be the latest to be afflicted in the atretic process. The high steroidogenic activity of atretic follicles lends support to the notion that atresia is not necessarily a degenerative process and that atretic follicles may play an essential role in ovarian physiology. The simultaneous occurence of growth and atretic processes may render the search for regulatory mechanisms involved in atresia difficult extremely. The questions such as how follicles are selected to undergo ovulation rather than atresia or what the mechanism of atresia is remain unanswered. However, the factors regulating or modifying ovarian hormonal milieu for the initiation of follicular growth and maturation or of atresia are being elucidated.

  • PDF

The rare case of 46,XX testicular disorder of sex development carrying a heterozygous p.Arg92Trp variant in NR5A1

  • Lia Kim;Hwa Young Kim;Jung Min Ko
    • Journal of Genetic Medicine
    • /
    • v.19 no.2
    • /
    • pp.115-119
    • /
    • 2022
  • The 46,XX testicular disorder of sex development (DSD) is a rare condition in which 46,XX individuals develop testicular differentiation and virilization. Translocation of the sex-determining region Y (SRY) onto the X chromosome is the main cause of 46,XX testicular DSD, whereas dysregulation between pro-testis and pro-ovarian genes can induce SRY-negative 46,XX testicular DSD. Nuclear receptor subfamily 5 group A member 1 (NR5A1), a nuclear receptor transcription factor, plays an essential role in gonadal development in XY and XX embryos. Herein, we report the first Korean case of SRY-negative 46,XX testicular DSD with a heterozygous NR5A1 p.Arg92Trp variant. The patient presented with a small penis, bifid scrotum, and bilateral undescended testes. Whole exome sequencing revealed a heterozygous missense variant (c.274C>T) of NR5A1. Our case highlights that NR5A1 gene variants need to be considered important causative factors of SRY-negative non-syndromic 46,XX testicular DSD.

Effect of Follicular Fluid Proteins and Gonadotropins on Progesterone Secretion by Buffalo Granulosa Cells In vitro

  • Vinze, Mukesh;Sharma, M.K.;Singh, Dheer
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.11
    • /
    • pp.1496-1500
    • /
    • 2004
  • In the mammalian ovary the follicular fluid contains proteins and peptides which play an important role in growth, development and maturation of oocytes. The gonadotropins and some other factors work synergistically and regulate ovarian functions. In the present study the effect of follicular fluid proteins (FFP) and gonadotropins on progesterone secretion by granulosa cells (GC) from buffalo ovary, was investigated during culture. The follicular fluid was collected from small (<5 mm), and medium (5-8 mm) follicles obtained from buffalo ovaries. The follicular fluid from medium follicles was fractionated with ammonium sulphate at 80% saturation. The precipitated protein fraction was further resolved in to minor (peaks I, III) and major (peak II) proteins using gel filtration (Sephadex G-200). The FFP from small follicles and major FFP (peak II) at a dose of 200 $\mu$g/well, significantly stimulated progesterone secretion by pooled GC (3${\times}10^{5}$ cells/2 ml medium/well). The minor FFP did not show any stimulatory effect. There was a significant increase in progesterone secretion by pooled GC in presence of FFP and LH (10 ng/well), however, FSH (20 ng/well) with FFP exhibited an inhibitory effect. The major FFP and gonadotropins were also studied for their effect on progesterone production by GC isolated from medium and large size follicles. The GC from medium follicles were more responsive to FSH and FFP whereas GC from large follicles exhibited enhanced progesterone secretion with LH and FFP. These results indicated that FFP have their own stimulatory effect and also act synergistically with gonadotropins. The significantly different response shown by GC, for steroid hormone secretion, is based on their stage of growth and differentiation. The purification and characterization of such steroidogenic proteins may help in elucidating their role in growth and differentiation of granulosa cells.

Metabolic Signatures of Adrenal Steroids in Preeclamptic Serum and Placenta Using Weighting Factor-Dependent Acquisitions

  • Lee, Chaelin;Oh, Min-Jeong;Cho, Geum Joon;Byun, Dong Jun;Seo, Hong Seog;Choi, Man Ho
    • Mass Spectrometry Letters
    • /
    • v.13 no.1
    • /
    • pp.11-19
    • /
    • 2022
  • Although translational research is referred to clinical chemistry measures, correct weighting factors for linear and quadratic calibration curves with least-squares regression algorithm have not been carefully considered in bioanalytical assays yet. The objective of this study was to identify steroidogenic roles in preeclampsia and verify accuracy of quantitative results by comparing two different linear regression models with weighting factor of 1 and 1/x2. A liquid chromatography-mass spectrometry (LC-MS)-based adrenal steroid assay was conducted to reveal metabolic signatures of preeclampsia in both serum and placenta samples obtained 15 preeclamptic patients and 17 age-matched control pregnant women (33.9 ± 4.2 vs. 32.8 ± 5.6 yr, respectively) at 34~36 gestational weeks. Percent biases in the unweighted model (wi = 1) were inversely proportional to concentrations (-739.4 ~ 852.9%) while those of weighted regression (wi = 1/x2) were < 18% for all variables. The optimized LC-MS combined with the weighted linear regression resulted in significantly increased maternal serum levels of pregnenolone, 21-deoxycortisol, and tetrahydrocortisone (P < 0.05 for all) in preeclampsia. Serum metabolic ratio of (tetrahydrocortisol + allo-tetrahydrocortisol) / tetrahydrocortisone indicating 11β-hydroxysteroid dehydrogenase type 2 was decreased (P < 0.005) in patients. In placenta, local concentrations of androstenedione were changed while its metabolic ratio to 17α-hydroxyprogesterone responsible for 17,20-lyase activity was significantly decreased in patients (P = 0.002). The current bioanalytical LC-MS assay with corrected weighting factor of 1/x2 may provide reliable and accurate quantitative outcomes, suggesting altered steroidogenesis in preeclampsia patients at late gestational weeks in the third trimester.

Roles of Local Estrogen and Progesterone Mediated Receptors in the Regulation of Endometrial Inflammation (자궁내막 염증에 대한 지엽적 에스트로겐 및 프로게스테론 매개 수용체의 역할)

  • Gyesik Min
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.102-113
    • /
    • 2023
  • This review discusses the cellular and molecular mechanisms by which the endometrial estrogen and progesterone receptors regulate local estrogen production, expression of the specific estrogen receptors, progesterone resistance, inflammatory responses and the differentiation and survival of endometriotic cells in endometrial inflammation. The epigenetic aberrations of endometrial stromal cells play an important role in the pathogenesis and progression of endometriosis. In particular, differential methylation of the estrogen receptor genes changes in the stromal cells the dominancy of estrogen receptor from ERα into ERβ, and results in the abnormal estrogen responses including inflammation, progesterone resistance and the disturbance of retinoid synthesis. These stromal cells also stimulate local estrogen production in response to PGE2 and the SF-1 mediated induction of steroidogenic enzyme expression, and the increased estradiol then feeds back into the ERβ to repeat the vicious inflammatory cycle through the activation of COX-2. In addition, high levels of ERβ expression may also change the chromatin structure of endometrial mesenchymal stem cells, and together with the repeated menstrual cycles can induce formation of the endometriotic tissue. The cascade of these serial events then leads to cell adhesion, angiogenesis and survival of the differentiation-disregulated stromal cells through the action of inflammatory factors such as ERβ-mediated estrogen, TNF-α and TGF-β1. Therefore, understanding of the dynamic hormonal changes during the menstrual cycle and the corresponding signal transduction mechanisms of the related nuclear receptors in endometrium would provide new insights for treating inflammatory diseases such as the endometriosis.