• Title/Summary/Keyword: Steroid-dependent

Search Result 103, Processing Time 0.027 seconds

Effect of Exogenous Administration of Tamoxifen on Hormonal Profile and Sexual Maturity in Indian Native Kadaknath Fowl

  • Biswas, Avishek;Mohan, J.;Sastry, K.V.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.1
    • /
    • pp.13-16
    • /
    • 2010
  • The effect of exogenous administration of tamoxifen (TAM) on hormonal profile and sexual maturity in Indian native Kadaknath (KN) fowl was investigated. Day-old chicks from the same hatch were randomly divided into 15 groups with 20 chicks in each group (5 treatments${\times}$3 replicates). The chicks were placed in battery brooders with wire-mesh floors and reared under uniform husbandry conditions (14 h light/d, 25-32${^{\circ}C}$) on a standard basal diet. At the age of two weeks (wk), birds from the control group ($T_{1}$) were injected with maize oil intramuscularly (I/M), whereas the other four experimental groups $T_{2}$, $T_{3}$, $T_{4}$ and $T_{5}$ were given tamoxifen (I/M) dissolved in maize oil at the rate of 0.5 mg (0.5 TAM), 1.0 mg (1.0 TAM), 2.5 mg (2.5 TAM) and 5.0 mg (5.0 TAM)/kg body weight, respectively, up to 30 wks on every alternate day. At every 6-wk interval, blood samples were collected from nine birds of each treatment group for estimation of estrogen and progesterone. The same birds were sacrificed for determination of the weight of ovary, oviduct, liver and adipose tissue. There was no significant difference in egg production traits except onset of lay and egg number. Low doses of TAM ($T_{3}$) advanced the onset of egg laying by 15 days over the control. Tamoxifen influenced the hormonal profile (estrogen and progesterone) in a dose dependent manner. However, higher doses of TAM suppressed ovary and oviductal growth. From this study, it may be concluded that lower doses of TAM enhanced sexual maturity while higher doses suppressed ovary and oviductal growth.

Molecular Biodesign of Plant Leaves and Flowers

  • Kim, Gyung-Tae
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2003.04a
    • /
    • pp.49-55
    • /
    • 2003
  • The morphology of the leaves and the flowers of angiosperms exhibit remarkable diversity. One of the factors showing the greatest variability of leaf organs is the leaf index, namely, the ratio of leaf length to leaf width. In some cases, different varieties of a single species or closely related species can be distinguished by differences in leaf index. To some extent, the leaf index reflects the morphological adaptation of leaves to a particular environment. In addition, the growth of leaf organs is dependent on the extent of the expansion of leaf cells and on cell proliferation in the cellular level. The rates of the division and enlargement of leaf cells at each stage contribute to the final shape of the leaf, and play important roles throughout leaf development. Thus, the control of leaf shape is related to the control of the shape of cells and the size of cells within the leaf. The shape of flower also reflects the shape of leaf, since floral organs are thought to be a derivative of leaf organs. No good tools have been available for studies of the mechanisms that underlie such biodiversity. However, we have recently obtained some information about molecular mechanisms of leaf morphogenesis as a result of studies of leaves of the model plant, Arabidopsis thaliana. For example, the ANGUSTIFOLIA (AN) gene, a homolog of animal CtBP genes, controls leaf width. AN appears to regulate the polar elongation of leaf cells via control of the arrangement of cortical microtubules. By contrast, the ROTUNDIFOLIA3 (ROT3) gene controls leaf length via the biosynthesis of steroid(s). We provide here an overview of the biodiversity exhibited by the leaf index of angiosperms. Taken together, we can discuss on the possibility of the control of the shapes and size of plant organs by transgenic approaches with the results from basic researches. For example, transgenic plants that overexpressed a wild-type ROT3 gene had longer leaves than parent plants, without any changes in leaf width. Thus, The genes for leaf growth and development, such as ROT3 gene, should be useful tools for the biodesign of plant organs.

  • PDF

Effect of DDT on Testosterone Production by Modulator Aromatase (CYP 19) in R2C

  • Lee, Kyung-Jin;Lee, Jong-Bin;Jeong, Hye-Gwang
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.3
    • /
    • pp.308-312
    • /
    • 2003
  • Various pesticides known or suspected to interfere with steroid hormone function were screened toy effects in leydig cells on catalytic activity and mRNA expression of aromatase. Dichlorodiphenyltrichloroethane (DDT) is a widespread environmental pollutant. In this study, we investigated the effect of DDT on testosterone production through aromatase activity and its molecular mechanism in testicular leydig cell, R2C by using radioimmunoassay (RIA). As the results, the potent leydig: cell activator LH increased testosterone production compared to the control. DDT exposure significantly decreased testosterone production in R2C cell. In addition, DDT was found to increase aromatase gene expression and activity in R2C cell in a dose dependent manner. In order to assess whether the suppressive effects of DDT on LH-inducible testosterone (T) production might be influenced by the ER, ICI 182.780 was used, and it was found that these inhibitory effects of DDT were antagonized by ICI 182.780, implying that the estrogen receptor (ER) mediates the suppressive effects of DDT. Furthermore, the inducible effects of DDT on aromatase gene expression might be influenced by the ER, ICI 182.780 was used, and it was found that these enhancing effects of DDT were antagonized by ICI 182.780, implying that the ER mediates the inducible effects of DDT. Our results indicated that DDT inhibition of luteinizing hormone (LH) -inducible T production in R2C cell is mediated through aromatase. However, the precise mechanisms by which DDT enhance in R2C cell remains unknown. The current study suggests the possibility that DDT might act as a modulator aromatase gene transcription.

Inhibitory Effects of Bojungchiseub-tang on Adipocyte Differentiation and Adipogenesis in 3T3-L1 Preadipocytes (보중치습탕이 3T3-L1 지방전구세포의 분화 및 지방생성 억제에 미치는 영향)

  • Lee, Soo Jung;Kim, Won Il;Kang, Kyung Hwa
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.288-295
    • /
    • 2014
  • Bojungchiseub-tang (BJCST) has been used in symptoms and signs of edema, dampness-phlegm, kidney failure, and so on. BJCST is also expected to have strong anti-obesity activities. However, little is known about the mechanisms of its inhibitory effects on adipocyte differentiation and adipogenesis. In the present study, we examined the effects and mechanism of BJCST on transcription factors and adipogenic genes of 3T3-L1 preadipocytes to understand its inhibitory effects on adipocyte differentiation and adipogenesis. Our results showed that BJCST significantly inhibited differentiation and adipogenesis of 3T3-L1 preadipocytes in a dose-dependent manner. To elucidate the mechanism of the effects of BJCST on lowering lipid content in 3T3-L1 adipocytes, we examined whether BJCST modulate the expressions of transcription factors to induce adipogenesis and adipogenic genes related to regulate accumulation of lipids. As a result, the expression of steroid regulatory element-binding protein (SREBP)1, cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins ${\alpha}$ ($C/EBP{\alpha}$), $C/EBP{\beta}$, $C/EBP{\delta}$, and peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) genes, which induce the adipose differentiation, liver X receptor $(LXR){\alpha}$ and fatty acid synthase (FAS) genes, which induce lipogenesis and adipose-specific aP2, Adipsin, lipoprotein lipase (LPL), CD36, TGF-${\beta}$, leptin and adiponectin genes, which compose fat formation were decreased. BJCST also reduced the expression of acyl CoA oxidase (ACO) and uncoupling protein (UCP) genes related to lipid oxidation. In conclusion, BJCST could regulate transcript factor related to induction of adipose differentiation and inhibited the accumulation of lipids and expression of adipogenic genes.

The effect of PAHs on the regualtion of CYP1 gene in ZR-75-1 and MCF7 human breast cancer cells

  • Min, K.N.;Sheen, Yhun Y.;Kim, J.Y.;Cho, M.J.
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.193-193
    • /
    • 2003
  • Recent industrial society has human widely exposed to PAHs that are coming from the incomplete combustion of organic material as widespread environmental contaminants. Biological activities of PAHs are not known although PAHs are considered as carcinogens. The mechanism of action of PAHs has been studied extensively, however it is not clear how PAHs turn on CYPlAl in human breast cancer, Our laboratory have been studied the effect of PAHs in the human breast cancer cells, MCF-7. In this study, we examined the ZR-75-1, human breast cancer cells, as a new system to evaluate bioactivity of PAHs and to compare the PAHs action with that of MCF-7 cells. ZR-75-1 human breast cancer cell line is responsible to estrogen and progesterone. We have been able to establish long term culture system of this cells then used for the study to the effect of 13 different PAHs and environmental samples. We demonstrate that PAHs induced the CYP1A1 promoter and 7-ethoxyresorufin O-deethylase (EROD) activity in a concentration-dependent manner. RT-PCR analysis indicated that PAHs significantly up-regulate the level of CYP1A1 mRNA. Some of PAHs showed stronger stimulatory effect on CYP1 gene expression than TCDD Apparently, ZR-75-1 cells have Aryl hydrocarbon receptors (AhR), therefore it would be a good experimental tool to study the cross-talk between PAHs and steroid actions.

  • PDF

Toxicogenomic Effect of Liver-toxic Environmental Chemicals in Human Hepatoma Cell Line

  • Kim, Seung-Jun;Park, Hye-Won;Yu, So-Yeon;Kim, Jun-Sub;Ha, Jung-Mi;Youn, Jong-Pil;An, Yu-Ri;Oh, Moon-Ju;Kim, Youn-Jung;Ryu, Jae-Chun;Hwang, Seung-Yong
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.4
    • /
    • pp.310-316
    • /
    • 2009
  • Some environmental chemicals have been shown to cause liver-toxicity as the result of bioaccumulation. Particularly, fungicides have been shown to cause varying degrees of hepatictoxicity and to disrupt steroid hormone homeostasis in in vivo models. The principal objective of this study was to evaluate the liver-toxic responses of environmental chemicals-in this case selected fungicides and parasiticides-in order to determine whether or not this agent differentially affected its toxicogenomic activities in hepatic tumor cell lines. To determine the gene expression profiles of 3 fungicides (triadimefon, myclobutanil, vinclozolin) and 1 parasiticide (dibutyl phthalate), we utilized a modified HazChem human array V2. Additionally, in order to observe the differential alterations in its time-dependent activities, we conducted two time (3 hr, 48 hr) exposures to the respective IC20 values of four chemicals. As a result, we analyzed the expression profiles of a total of 1638 genes, and we identified 70 positive significant genes and 144 negative significant genes using four fungicidic and parasiticidic chemicals, using SAM (Significant Analysis of Microarray) methods (q-value<0.5%). These genes were analyzed and identified as being related to apoptosis, stress responses, germ cell development, cofactor metabolism, and lipid metabolism in GO functions and pathways. Additionally, we found 120 genes among those time-dependently differentially expressed genes, using 1-way ANOVA (P-value<0.05). These genes were related to protein metabolism, stress responses, and positive regulation of apoptosis. These data support the conclusion that the four tested chemicals have common toxicogenomic effects and evidence respectively differential expression profiles according to exposure time.

Anti-inflammatory and Immunosuppressive Effects of Panax notoginseng

  • Cao, Thao Quyen;Han, Jae Hyuk;Lee, Hyun-Su;Ha, Manh Tuan;Woo, Mi Hee;Min, Byung Sun
    • Natural Product Sciences
    • /
    • v.25 no.4
    • /
    • pp.317-325
    • /
    • 2019
  • Here, we designed to examine the anti-inflammatory effects on RAW264.7 cells and the immunosuppressive effects by evaluating interleukin-2 (IL-2) production in Jurkat T cells using a MeOH extract of Panax notoginseng roots. The results showed that the MeOH extract inhibited the synthesis of nitric oxide (NO) in a dose-dependent manner (IC50 value of 7.08 ㎍/mL) and displayed effects on T cell activation at a concentration of 400 ㎍/mL. In efforts to identify the potent compounds, bioactivity-guided fractionation of the MeOH extract and chemical investigation of its active CH2Cl2-, EtOAc-, and butanol-soluble fractions led to the successful isolation and identification of eleven compounds, including two polyacetylenes (1, 2), a steroid saponin (3), seven dammarane-type ginsenosides (4 - 10), and an oleanane-type ginsenoside (11). Among them, compound 11 was isolated from this plant for the first time. Compound 2 exhibited potent inhibitory effects on NO synthesis and an immunosuppressive effect with IC50 values of 2.28 and 65.57 μM, respectively.

Effect of Hypoxanthine and Ovarian Steroids on the Maturation of Mouse Oocytes (Hypoxanthine과 Ovarian Steroids가 생쥐난자 성숙에 미치는 영향)

  • Ro, Hyo-Syup;Jeong, Young-Ju;Cho, Han-Gu;Park, Hwan-Kyu;Song, Wan-Rye;Lee, Ki-Suk;Kim, Jong-Duk
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.21 no.2
    • /
    • pp.191-200
    • /
    • 1994
  • The influence of hypoxanthine and ovarian steroids on the meiotic maturation process of mouse oocytes was investigated for the qualified application of culture medium in in vitro fertilization(IVF). Mouse oocytes were cultured in hypoxanthine and various ovarian steroids(progesterone, estradiol-17${\beta}$ and testosterone) and their effects on the oocyte maturation had been observed. When mouse oocytes were cultured in the various concentration(1-4mM) of hypoxanthine, meiotic maturation of cumulus cell-enclosed oocytes was inhibited by presence itself, which was a dose-dependent effect in meiotic arrest of mouse oocytes. The presence of progesterone, estradiol-17${\beta}$ and testosterone have made the mouse oocyte mature properly. Meanwhile maturation of cumulus cell-enclosed oocyte was severely inhibited by 3 hoursculture in the media of progesterone supplemented with hypoxanthine. However the continuous presence lasting 24 hours of progesterone even supplemented with hypoxanthine had got rid of the inhibition of oocytes maturation. Not only estradiol-17${\beta}$ supplemented with hypoxanthine but also testosterone supplemented with hypoxanthine exert the severe inhibition of the maturation of cumulus cell-enclosed oocytes for 3-hours culture. However the continuous presence lasting 24 hours of estradiol-17${\beta}$ and testosterone even supplemented with· hypoxanthine had relieved the inhibition of oocytes maturation. These results make us suggest that hypoxanthine inhibits the mouse oocyte maturation, particularly markedly in conjunction with ovarian steroids for short period, which indicated some sort of the synergistic inhibitory retationship between the ovarian steroids and hypoxanthine.

  • PDF

The Case Study of Lactobacillus mixture culture fluid on Atopic dermatitis (아토피피부염에 대한 Lactobacillus 혼합배양액의 임상 증례)

  • Jo, Eul-Hwa;Kim, Tae-Keun;Hong, Su-Jung;Jung, Do-Yean;Hwang, Seng-Yean;Ahn, Seong-Hun
    • The Journal of Korean Medicine
    • /
    • v.36 no.3
    • /
    • pp.135-143
    • /
    • 2015
  • Objectives: Recently lactic acid formulation was known as the adjuvant therapy on atopic dermatitis(AD) symptoms because of little side effects. In this study, it was studied that Lactobacillus mixed culture appliment was effective on not on AD symptoms. Methods: The case-photos 30-40 times of AD symptoms from case were observed with literatures. The case-photos were acquired with environmental AD dermatitis experience program which is conducted in SUNCHANG RESERCH INSTITUTE OF HEALTH AND LONGEVITY from 2014.01 to 2014.08. Experience applicants were limited the oral administration and chemical external administration. Results: Lactobacillus mixed culture appliment was effective because of the mitigation or disappearance of AD primary symptoms like pruritus, erythema, edema, effusion, dry skin, scaly, scab etc. AD symptom degree was dependent on lactobacillus mixed culture appliment times, and classified as Reaction Period (RAP), Reduction Period (RDP), Efection Period (EP), Reproduction Period (RPP) on a single mixed culture appliment time. And AD symptoms which were appeared in RPP were classified as Rebound Period (RBP), Effection Period (EP), Subclinical Period (SCP). Conclusions: Lactobacillus mixed culture appliment is considered to be useful for AD symptoms and is estimated to be effective by different mechanism with oral administration or steroid ointment application. Lactobacillus mixed culture appliment is expected to induce a synergistic effects on AD symptom reliefs with the other oral administration.

Synthetic Lead Compounds Modulate Activity of Large-conductance $Ca^{2+}$-activated Potassium Channels Expressed in Xenopus Oocytes

  • Ha, Tal-Soo;Kim, Yong-Chul;Park, Chul-Seung
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.42-42
    • /
    • 2003
  • Large-conductance $Ca^{2+}$-activated potassium channels ($BK_{Ca}$ are a widely distributed and play key roles in various cell functions. In nerve cells, $BK_{Ca}$ channels shorten the duration of action potentials and block $Ca^{2+}$ entry thereby repolarizing excitable cells after excitation. $BK_{Ca}$ channel opening has been postulated to confer neuroprotection during stroke, and has attracted attention as a means for therapeutic intervention in asthma, hypertension, convulsions, and traumatic brain injury. Several natural and synthetic compounds including a steroid hormone, $\beta$-estradiol, have been identified as the activators of $BK_{Ca}$ channels. Based on the structural features of the previously reported activators of $BK_{Ca}$ channels, we designed several lead compounds, synthesized chemically, and tested their functional activity on cloned $BK_{Ca}$ channels. The $\alpha$ subunit of rat $BK_{Ca}$ channel was expressed alone or with different $\beta$ subunits in Xenopus oocytes and the effects of the compounds were tested electrophysiological means. One of the lead compounds affected the activity of the $\alpha$ subunit of $BK_{Ca}$ channel in a $\beta$ subunit-specific manner. While the activity of B $K_{ca}$ channel $\alpha$ subunit was Potentiated, the channel composed of $\alpha$ and $\beta$1 subunits were inhibited by this compound. We are currently investigating the mechanism of the $\beta$ subunit-dependent effects and planning to localize the receptor site of the lead compound.f the lead compound.

  • PDF