• Title/Summary/Keyword: Stereotactic Radiosurgery

Search Result 198, Processing Time 0.032 seconds

Evaluation of Accuracy on Hitchcoke CT/angio localization system using QA head phantom (QA용 두부 팬톰을 이용한 Hitchcoke CT 및 혈관조영 정위적 시스템에 대한 정확도 평가)

  • 김성현;서태석;윤세철;손병철;김문찬;신경섭
    • Progress in Medical Physics
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 1998
  • In order to provide complementary image data, CT(computed tomography), MR(magnetic resonance) and angiography have been used in the field of Stereotactic Radiosurgery(SRS) and neurosurgery. The aim of this work is to develop 3-D stereotactic localization system in order to determine the precise shape, size and location of the lesion in the brain in the field of Stereotactic Radiosurgery(SRS) and neurosurgery using multi-image modality and multi purpose QA phantom. In order to obtain accurate position of a target, Hitchcoke stereotactic frame and CT/angiography localizers were rigidly attached to the phantom with nine targets dispersed in 3-D space. The algorithms to obtain a 3-D stereotactic coordinates of the target have been developed using the images of the geometrical phantom which were taken by CT/angiography. Positions of targets computed by our algorithms were compared to the absolute position assigned in the phantom. Outlines of targets on each CT image were superimposed each other on angiography images. A spatial mean distance errors were 1.02${\pm}$0.17mm for CT with a 512${\times}$512 matrix and 2mm slice thickness, 0.41${\pm}$0.05mm for angiogra- phy localization. The resulting accuracy in the target localization suggests that the developed system has enough Qualification for Stereotactic Radiosurgery (SRS).

  • PDF

Development of 3-D Radiosurgery Planning System Using IBM Personal Computer (IBM Personal Computer를 이용한 3차원적 뇌정위 방사선 수술계획 시스템의 개발)

  • Suh Tae-Suk;Suh Doug-Young;Park Charn Il;Ha Sung Whan;Kang Wee Saing;Park Sung Hun;Yoon Sei Chul
    • Radiation Oncology Journal
    • /
    • v.11 no.1
    • /
    • pp.167-174
    • /
    • 1993
  • Recently, stereotactic radiosurgery plan is required with the information of 3-D image and dose distribution. A project has been doing if developing LINAC based stereotactic radiosurgery since April 1991. The purpose of this research is to develop 3-D radiosurgery planning system using personal computer. The procedure of this research is based on two steps. The first step is to develop 3-D localization system, which input the image information of the patient, coordinate transformation, the position and shape of target, and patient contour into computer system using CT image and stereotactic frame. The second step is to develop 3-D dose planning system, which compute dose distribution on image plane, display on high resolution monitor both isodose distribution and patient image simultaneously and develop menu-driven planning system. This prototype of radiosurgery planning system was applied recently for several clinical cases. It was shown that our planning system is fast, accurate and efficient while making it possible to handle various kinds of image modalities such as angiography, CT and MRI. It makes it possible to develop general 3-D planning system using beam's eye view or CT simulation in radiation therapy in future.

  • PDF

Clinical Analysis of Novalis Stereotactic Radiosurgery for Brain Metastases

  • Gu, Hae-Won;Sohn, Moon-Jun;Lee, Dong-Joon;Lee, Hye-Ran;Lee, Chae-Heuck;Whang, C.-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.3
    • /
    • pp.245-251
    • /
    • 2009
  • Objective : The authors analyzed the effectiveness and therapeutic response of Novalis shaped beam radiosurgery for metastatic brain tumors, and the prognostic factors which influenced the outcome. Methods : We performed a retrospective analysis of 106 patients who underwent 159 treatments for 640 metastatic brain lesions between January 2000 and April 2008. The pathologies of the primary tumor were mainly lung (45.3%), breast (18.2%) and GI tract (13.2%). We classified the patients using Radiation Therapy Oncology Group Recursive Partitioning Analysis (RPA) and then analyzed the survival and prognostic factors according to the Kaplan Meier method and univariate analysis. Results : The overall median actuarial survival rate was 7.3 months from the time of first radiosurgery treatment while 1 and 2 year actuarial survival estimates were 31% and 14.4%, respectively. Median actuarial survival rates for RPA classes I, II, and III were 31.3 months, 7.5 months and 1.7 months, respectively. Patients' life spans, higher Karnofsky performance scores and age correlated closely with RPA classes. However, sex and the number of lesions were not found to be significantly associated with length of survival. Conclusion : This result suggests that Novalis radiosurgery can be a good treatment option for treatment of the patients with brain metastases.

Stereotactic LINAC Radiosurgery of Meningiomas (선형가속기를 이용한 뇌수막종의 뇌정위적 방사선수술)

  • Ryu, Kyung-Sik;Son, Byung-Chul;Kim, Moon-Chan;Suh, Tae-Suk;Kay, Chul-Seung;Yoon, Sei-Chul;Kang, Joon-Ki
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.3
    • /
    • pp.317-323
    • /
    • 2000
  • Objective : To evaluate the role of stereotactic LINAC radiosurgery in treatment of meningiomas, the authors retrospectively analyzed the result of radiosurgery in our institute. Method: During last ten years, twenty patients underwent stereotactic LINAC radiosurgery(LINAC SRS) for meningiomas. The mean age of the patients was 51 years(22-78 years). The most common tumor location for radiosurgery was parasagittal, sphenoid wing and tentorial area. With regards to indications of radiosurgery for meningiomas, LINAC radiosurgery was done for primary treatment in six patients, for postoperative residual tumors in eleven patients, for postoperative regrowth in three patients. Mean tumor volume was $5.14cm^3$($0.28-15.1cm^3$), mean field diameter was 2.01cm(1.2-3cm). The mean marginal dose was 20.55Gy(13-30Gy). The follow-up evaluation was done annually with radiologic findings and clinical status. The mean follow-up period was 46.8(24-120) months. Result : In the radiologic response, the tumor volume was reduced in five(25%) of twenty patients, fourteen showed arrested growth(70%), but one patient showed increased growth(5%). In the clinical response, nine patients improved clinically(45%), ten patients was stable(50%) and one patient worsened during follow-up period. With regards to correlation with radiologic and clinical response, in nineteen patients who showed radiologic response to radiosurgery(decreased and arrested growth after radiosurgery), nine patients(47.4%) improved and ten patients (52.6%) showed no change, one patient(5%) had symptomatic radiation necrosis at four years after SRS, which needed craniotomy. Conclusion : The overall control rate of meningiomas with LINAC radiosurgery was 95% in radiologic follow up and 95% clinically. The radiation complication rate was 5%. These results indicate that LINAC radiosurgery can be considered as safe and effective method for meningiomas.

  • PDF

Dose Characteristics of Stereotactic Radiosurgery in High Energy Linear Accelerator Proton Beam (고에너지 선형가속기에 의한 입체방사선수술의 선량특성)

  • Choi, Tae-Jin;Kim, Ok-Bae
    • Radiation Oncology Journal
    • /
    • v.10 no.2
    • /
    • pp.137-145
    • /
    • 1992
  • Three-dimensional dose calculations based on CT images are fundamental to stereotactic radiosurgery for small intracranial tumor. In our stereotactic radiosurgery program, irradiations have been performed using the 6 MV photon beam of linear accelerator after stereotactic CT investigations of the target center through the beam's-eye view and the coordinates of BRW frame converted to that of radiosurgery. Also we can describe the tumor diameter and the shape in three dimensional configuration. Non-coplanar irradiation technique was developed that it consists of a combination of a moving field with a gantry angle of $140^{\circ}$, and a horizontal couch angle of $200^{\circ}C$ around the isocenter. In this radiosurgery technique, we provide the patient head setup in the base-ring holder and rotate around body axis. The total gantry moving range shows angle of 2520 degrees via two different types of gantry movement in a plane perpendicular to the axis of patient. The 3-D isodose curves overlapped to the tumor contours in screen and analytic dose profiles in calculation area were provided to calculate the thickness of $80\%$ of tumor center dose to $20\%$ of that. Furtheremore we provided the 3-D dose profiles in entire calculation plane. In this experiments, measured isodose curves in phantom irradiation have shown very similiar to that of computer generations.

  • PDF

New Techniques for Optimal Treatment Planning for LINAC-based Stereotactic Radiosurgery (LINAC 뇌정의적 방사선 수술시 새로운 최적 선량분포계획 시스템의 개발)

  • Suh Tae-suk
    • Radiation Oncology Journal
    • /
    • v.10 no.1
    • /
    • pp.95-100
    • /
    • 1992
  • Since LINAC-based stereotactic radiosurgery uses multiple noncoplanar arcs, three-dimensional dose evaluation and many beam parameters, a lengthy computation time is required to optimize even the simplest case by a trial and error. The basic approach presented in this paper is to show promising methods using an experimental optimization and an analytic optimization The purpose of this paper is not to describe the detailed methods, but introduce briefly, proceeding research done currently or in near future. A more detailed description will be shown in ongoing published papers. Experimental optimization is based on two approaches. One is shaping the target volumes through the use of multiple isocenters determined from dose experience and testing. The other method is conformal therapy using a beam's eye view technique and field shaping. The analytic approach is to adapt computer-aided design optimization in finding optimum irradiation parameters automatically.

  • PDF

Optimum Field Size for the Whole Body Stereotactic Radiosurgery (전신 정위 방사선 치료시의 적정 조사면 크기)

  • 이병용;민철기;정원규;최은경
    • Progress in Medical Physics
    • /
    • v.13 no.1
    • /
    • pp.15-20
    • /
    • 2002
  • Optimum field size for the whole body stereotactic radiosurgery was studied. Dose distributions from the various sizes of targets (diameter 1cm to 7cm, icm interval) were used for this study. Planing scores, expressed as the Target Coverage Index (TCI), were calculated for various target Margin ranged 0cm to 0.5cm. Highest scores were obtained for no Margin to the target size. The target Margin -0.5cm to 0cm to the target showed best TCI the cases of the target size larger than 6cm diameter. No Margin or 0.5cm Margin generated best TCI for less than 2cm cases. Prescription to 80~90% gives best results.

  • PDF

Target Localization and Dose Delivery Verification used a Water Phantom in Stereotactic Radiosurgery (정위적 방사선 수술에서 물팬텀을 이용한 목표점 및 전달 선량확인)

  • Kang, Young-Nam;Lee, Dong-Jun;Kwon, Soo-Il;Kwon, Yang
    • Progress in Medical Physics
    • /
    • v.7 no.2
    • /
    • pp.19-28
    • /
    • 1996
  • It is important that the precise decision of the region and the accurate delivery of radiation dose required for treatment in the stereotactic radiosurgery. In this research, radiosurgery was carried with Leksell streotactic frame(LSF) which is especially developed water phantom to verify in experiment. Leksell Gamma Knife and LSF are used in radiosurgery is the spherical water phantom has the thickness of 2 mm, the radius of 160mm. The film for target localization and ionchamber for dose delivery was used in measurement instruments We compare the coordinate of target which is initialized by biplannar film with simple X-ray to the coordinate of film measured directly. The calculated dose by computer simulation and the measured dose by ionization chamber are compared. In this research, the target localization has the range ${\pm}$0.3mm for the acceptable error range and the absolute dose is :${\pm}$0.3mm for the acceptable error range. This research shows that the values measured by using the especially manufactured phantom are included the acceptable error range. Thus, this water phantom will be used continuously in the periodic quality assurance of Gamma Knife Unit and Leksell Stereotactic Frame.

  • PDF

Verification of Stereotactic Target Point Achieved by Acquisition of MR Image in Actual Treatment Position of Radiosurgery (정위적 방사선 수술시 치료위치에서의 정위적 표적점 확인을 통한 자기공명영상 획득의 정확도 연구)

  • 윤형근;신교철;김영식
    • Progress in Medical Physics
    • /
    • v.9 no.2
    • /
    • pp.89-94
    • /
    • 1998
  • To make practical application of the MR image for stereotactic radiosurgery, the target point-achieved by acquisition of MR image in stereotactic radiosurgery planning system must agree with the actual isocenter of irradiation in real treatment. And the amount of distortion of the MR image must be known to make a correction for the agreement. A radish containing abundant water content was chosen as a homogeneous phantom for the purpose of verification of the agreement in this experiment. A dosimetric film was firmly attached to the small specially fabricated acryl plate and needle puncture was made through the film just into the acryl plate and a drop of oil was dropped into the hole of the film. The acryl plate with film was inserted into the radish and the dorp of oil represented the target point in MR image. After the image acquisition by stereotatic radiosurgery planning system, we achieved stereotactic coordinate of the target point represented by the oil drop. And we proceeded to actual irradiation to the target point according to the procedure of stereotactic radiosurgery. After the irradiation, the film in the radish was developed and processed and the degree of coincidence between the center of the radiation distribution and the target point represented by the hole in the film was measured. The discrepancy between two points was under 0.5 mm. so we could confirm good coincidence in homogeneous phantom such as radish. On the other hand, authors tried to use our home-made device for estimation of distortion of MR image.

  • PDF