• Title/Summary/Keyword: Stereotactic Radiosurgery(SRS)

Search Result 67, Processing Time 0.024 seconds

Advances in Radiation Oncology in New Millennium in Korea (21세기 방사선종양학의 전망:최근의 진보와 한국에서의 발전)

  • Huh, Seung-Jae;Park, Chan-Il
    • Radiation Oncology Journal
    • /
    • v.18 no.3
    • /
    • pp.167-176
    • /
    • 2000
  • The objective of recent radiation therapy is to improve the quality of treatment and the after treatment quality of life. In Korea, sharing the same objective, significant advancement was made due to the gradual increase of patient number and rapid increase of treatment facilities. The advancement includes generalization of three-dimensional conformal radiotherapy (3D-CRT), application of linac-based stereotactic radiosurgery (SRS), and furthermore, the introduction of intensity modulated radiation therapy (IMRT). Authors in this paper prospectively review the followings: the advancement of radiation oncology in Korea, the recent status of four-dimensional radiation therapy, IMRT, the concept of the treatment with biological conformity, the trend of combined chemoradiotherapy, the importance of internet and radiation oncology information management system as influenced by the revolution of information technology, and finally the global trend of telemedicine in radiation oncology. Additionally, we suggest the methods to improve radiotherapy treatment, which include improvement of quality assurance (QA) measures by developing Koreanized QA protocol and system, regional study about clinical protocol development for phase three clinical trial, suggestion of unified treatment protocol and guideline by academic or research societies, domestic generation of treatment equipment's or system, establishment of nationwide data base of radiation-oncology-related information, and finally patterns-of-care study about major cancers.

  • PDF

Suggestion for Comprehensive Quality Assurance of Medical Linear Accelerator in Korea (국내 선형가속기의 포괄적인 품질관리체계에 대한 제언)

  • Choi, Sang Hyoun;Park, Dong-wook;Kim, Kum Bae;Kim, Dong Wook;Lee, Jaiki;Shin, Dong Oh
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.294-303
    • /
    • 2015
  • American Association of Physicists in Medicine (AAPM) Published Task Group 40 report which includes recommendations for comprehensive quality assurance (QA) for medical linear accelerator in 1994 and TG-142 report for recommendation for QA which includes procedures such as intensity-modulated radiotherapy (IMRT), stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT) in 2010. Recently, Nuclear Safety and Security Commission (NSSC) published NSSC notification no. 2015-005 which is "Technological standards for radiation safety of medical field". This notification regulate to establish guidelines for quality assurance which includes organization and job, devices, methods/frequency/tolerances and action levels for QA, and to implement quality assurance in each medical institution. For this reason, all of these facilities using medical machine for patient treatment should establish items, frequencies and tolerances for proper QA for medical treatment machine that use the techniques such as non-IMRT, IMRT and SRS/SBRT, and perform quality assurance. For domestic, however, there are lack of guidelines and reports of Korean Society of Medical Physicists (KSMP) for reference to establish systematic QA report in medical institutes. This report, therefore, suggested comprehensive quality assurance system such as the scheme of quality assurance system, which is considered for domestic conditions, based the notification of NSSC and AAPM TG-142 reports. We think that the quality assurance system suggested for medical linear accelerator also help establishing QA system for another high-precision radiation treatment machines.

Estimation of CyberKnife Respiratory Tracking System Using Moving Phantom (동적 팬톰을 이용한 사이버나이프 호흡동기 추적장치의 위치 정확성 평가)

  • Seo, Jae-Hyuk;Kang, Young-Nam;Jang, Ji-Sun;Shin, Hun-Joo;Jung, Ji-Young;Choi, Byong-Ock;Choi, Ihl-Bohng;Lee, Dong-Joon;Kwon, Soo-Il;Lim, Jong-Soo
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.324-330
    • /
    • 2009
  • In this study, we evaluated accuracy and usefulness of CyberKnife Respiratory Tracking System ($Synchrony^{TM}$, Accuray, USA) about a moving during stereotactic radiosurgery. For this study, we used moving phantom that can move the target. We also used Respiratory Tracking System called Synchrony of the Cyberknife in order to track the moving target. For treatment planning of the moving target, we obtained an image using 4D-CT. To measure dose distribution and point dose at the moving target, ion chamber (0.62 cc) and gafchromic EBT film were used. We compared dose distribution (80% isodose line of prescription dose) of static target to that of moving target in order to evaluate the accuracy of Respiratory Tracking System. We also measured the point dose at the target. The mean difference of synchronization for TLS (target localization system) and Synchrony were $11.5{\pm}3.09\;mm$ for desynchronization and $0.14{\pm}0.08\;mm$ for synchronization. The mean difference between static target plan and moving target plan using 4D CT images was $0.18{\pm}0.06\;mm$. And, the accuracy of Respiratory Tracking System was less 1 mm. Estimation of usefulness in Respiratory Tracking System was $17.39{\pm}0.14\;mm$ for inactivity and $1.37{\pm}0.11\;mm$ for activity. The mean difference of absolute dose was $0.68{\pm}0.38%$ in static target and $1.31{\pm}0.81%$ in moving target. As a conclusion, when we treat about the moving target, we consider that it is important to use 4D-CT and the Respiratory Tracking System. In this study, we confirmed the accuracy and usefulness of Respiratory Tracking System in the Cyberknife.

  • PDF

Fractionated Stereotactic Radiotherapy (FSRT) Using Gold Markers : A Comparison of the Isocenter between Multiple Arcs and Static Conformal Beams (금속표지자를 이용한 다중호형 정위방사선치료와 입체조형 정위방사선치료의 회전중심점 비교)

  • 장지영;김기환;김재성;김준상;송창준;김선환;조문준
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.28-33
    • /
    • 2003
  • The aim of the study was to assess the isocenter deviation between multiple arcs and conformal beams in frameless FSRT. Forty seven patients received single isocenter radiosurgery or therapy (SRS/T) using available framelss FSRT system from Aug. 1997 to Dec. 2m. In choosing multiple arc FSRT or conformal FSRT, we had considered one of two techniques with respect to tumor size and tumor shape. In multiple arc FSRT, the average and standard deviation (SD) of the isocenter deviation was 0.2 mm (SD 0.2 mm), 0.2 mm (SD 0.2) and 0.3 mm (SD 0.2 mm)in the lateral (x), anterior-posterior (y) and cranio-caudal directions (z). In conformal FSRT, the average deviation and SD of the isocenter deviation was 0.2 mm (SD 0.2 mm), 0.3 mm(0.2 mm) and 0.4 mm (SD 0.2 mm) in the x, y and z directions. The average spacial deviation ($\Delta$r) was 0.41 mm and 0.54 mm in multiple arcs and conformal beams, respectively. The isocenter deviation using frameless FSRT system was similar value between multiple arcs and conformal beams. In practice, we believed we can select the appropriate treatment technique according to tumor shape and size.

  • PDF

Three Dimensional Target Volume Reconstruction from Multiple Projection Images (다중투사영상을 이용한 표적체적의 3차원 재구성)

  • 정광호;진호상;이형구;최보영;서태석
    • Progress in Medical Physics
    • /
    • v.14 no.3
    • /
    • pp.167-174
    • /
    • 2003
  • In the radiation treatment planning (RTP) process, especially for stereotactic radiosurgery (SRS), knowing the exact volume and shape and the precise position of a lesion is very important. Sometimes X-ray projection images, such as angiograms, become the best choice for lesion identification. However, while the exact target position can be acquired by bi-projection images, 3D target reconstruction from bi-projection images is considered to be impossible. The aim of this study was to reconstruct the 3D target volume from multiple projection images. It was assumed that we knew the exact target position in advance, and all processes were performed in Target Coordinates, where the origin was the center of the target. We used six projections: two projections were used to make a Reconstruction Box and four projections were for image acquisition. The Reconstruction Box was made up of voxels of 3D matrices. Projection images were transformed into 3D in this virtual box using a geometric back-projection method. The resolution and the accuracy of the reconstructed target volume were dependent on the target size. An algorithm was applied to an ellipsoid model and a horseshoe-shaped model. Projection images were created geometrically using C program language, and reconstruction was also performed using C program language and Matlab ver. 6(The Mathwork Inc., USA). For the ellipsoid model, the reconstructed volume was slightly overestimated, but the target shape and position proved to be correct. For the horseshoe-shaped model, reconstructed volume was somewhat different from the original target model, but there was a considerable improvement in determining the target volume.

  • PDF

Determination of Phantom Scatter Factors for Small Photon Fields (소조사면 광자선의 팬톰산란인수 결정)

  • Oh, Young-Kee;Choi, Tae-Jin;Kim, Jin-Hee;Kim, Ok-Bae
    • Progress in Medical Physics
    • /
    • v.20 no.2
    • /
    • pp.106-111
    • /
    • 2009
  • Total scatter factor ($S_{cp}$), head scatter factor ($S_c$) and phantom scatter factor ($S_p$) are very important for accurate radiation therapy at stereotactic radiosurgery (SRS) with irregular field shape using micro-MLC and intensity modulated radiation therapy (IMRT) including many small field sizes. In this study we measured and compared $S_{cp}$ with reference ion chamber, pinpoint chamber and diode detector and adapted the resuls form diode detector. Head scatter factors for small field sizes were also measured with diode detector covered 1.5 cm-thick solid water build-up cap. Some errors like as electron contamination of 1~3% were included in the values of Sc but trend of total results of $S_c$ was coincided with basic theory. Phantom scatter factors for small field sizes were calculated form $S_{cp}$ and $S_c$. The results of $S_p$ were compared and were well-agreed with those of other authors.

  • PDF

Dosimetric Characteristics of Detectors in Measurement of Beam Data for Small Fields of Linear Accelerator (선형가속기의 소조사면에 대한 빔 자료 측정에서 검출기의 선량 특성 분석)

  • Koo, Ki-Lae;Yang, Oh-Nam;Lim, Cheong-Hwan;Choi, Won-Sik;Shin, Seong-Soo;Ahn, Woo-Sang
    • Journal of radiological science and technology
    • /
    • v.35 no.3
    • /
    • pp.265-273
    • /
    • 2012
  • Aquisition of accurate beam data is very important to calculate a reliable dose distribution of the treatment planning system for small radiation fields in intensity-modulated radiation therapy(IMRT) and stereotactic radiosurgery(SRS). For the measurement of small fields, the choice of a suitable detector is important due to the shape gradient in profile penumbra, the lack of lateral electronic equilibrium, and the effect of effective detector volume. Therefore, this study was to analyze the dosimetric characteristics of various detectors in measurement of beam data for small fields of linear accelerator. 0.01cc and 0.13cc ion chambers (CC01 and CC13) and a stereotactic diode detector(SFD) were used for measurement of small fields. The beam data, including the percent depth dose, output factor, and beam profile were acquired under 6 MV and 15 MV photon beams. Measurements were performed with the field size ranging from $2{\times}2cm^2$ to $5{\times}5cm^2$. For $2{\times}2cm^2$ field size, the differences of the ratios of $PDD_{20}$ and $PDD_{10}$ measured by CC01 and SFD detectors were 1.02% and 0.12% for 6 MV and 15 MV photon beams, respectively. For field sizes larger than $3{\times}3cm^2$, the differences of values of $PDD_{20}/PDD_{10}$ obtained from each detector were 1.15% and 0.71% for 6 MV and 15 MV photon beams, respectively. The output factors obtained from CC01 and SFD for $2{\times}2cm^2$ field size were within 0.5% and 1.5% for 6 MV and 15 MV, respectively. The differences in output factor of three detectors for $3{\times}3cm^2$ to $5{\times}5cm^2$ field sizes were within 0.5%. Profile penumbras measured by the SFD, CC01, and CC13 detectors at three depths were average 2.7 mm and 3.5 mm, 3.4 mm and 4.3 mm, and 5.2 mm and 6.1 mm for 6 MV and 15 MV photon beams, respectively. In conclusion, it could be possible to use of the CC01 and SFD detectors for the measurement of percent depth dose and output factor for $2{\times}2cm^2$ field size, and to use of three detectors for $3{\times}3cm^2$ to $5{\times}5cm^2$ field sizes. CC01 and SFD detectors, consider ably smaller than the radiation field, should be used in order to accurately measure the profile penumbra for small field sizes.