• Title/Summary/Keyword: Stereotactic

Search Result 404, Processing Time 0.034 seconds

Clinical Results from Single-Fraction Stereotactic Radiosurgery (SRS) of Brain Arteriovenous Malformation: Single Center Experience (뇌동정맥기형에서 선형가속기를 이용한 방사선 수술 후의 임상적 결과)

  • Lim, Soo-Mee;Lee, Re-Na;Suh, Hyun-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.3
    • /
    • pp.274-280
    • /
    • 2010
  • The purpose of this study was to analyze the effect of single-fraction stereotactic radiosurgery (SRS) for the treatment of 15 cases of cerebral arteriovenous malformations (AVMs). Between 2002 and 2009, of the 25 patients who had SRS for the treatment of cerebral AVM, 15 patients (6 men, 9 women) taken a digital subtraction angiography (DSA) over 12 months after SRS were included. We retrospectively evaluated the size, location, hemorrhage of nidus, angiographic changes on follow-up on the MR angiography and DSA, and clinical complications during follow-up periods. At a median follow-up of 24 months (range 12-89), complete obliteration of nidus was observed in all patients (100%) while residual draining veins was observed in 3 patients (20%). There was no clinical complication during the follow-up period except seizure in 1 patient. The mean nidus volume was 4.7cc (0.5~11.7 cc, SD 3.7 cc). The locations of nidus were in cerebral hemisphere in 11 patients, cerebellum in 2 patients, basal ganglia in 1 patient, and pons in 1 patient respectively. 9 cases were hemorrhagic, and 6 cases were non-hemorrhagic AVMs. The SRS with LINAC is a safe and effective treatment for cerebral AVMs when the follow up period is over 4 years. However, it is recommended to continue to follow up until the draining vein on arterial phase of follow up DSA disappears completely.

Arrangement and analysis of multi-isocenter based on 3-D spatial unit in stereotactic radiosurgery (정위적 방사선 수술시 3차원적 공간상의 체적소에 기반한 회전중심점들(Multi-isocenter)의 표적내 자동적 배치 및 분석)

  • Choi, Kyoung-Sik;Oh, Seung-Jong;Lee, Jeong-Woo;Suh, Tae-Suk;Choe, Bo-Young;Kim, Moon-Chan
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.75-77
    • /
    • 2004
  • Stereotactic radiosurgery(SRS) is a technique to deliver a high dose to a particular target region and a low dose to the critical organ using only one or a few irradiations while the patient is fixed with a stereotactic frame. The optimized plan is decided by repetitive work to combine the beam parameters and identify prescribed doses level in a tumor, which is usually called a trial and error method. This requires a great deal of time, effort, and experience. Therefore, we developed the automatic arrangement of multi-isocenter within irregularly shaped tumor. At the arbitrary targets, which is this method based on the voxel unit of the space, well satisfies the dose conformity and dose homogeneity to the targets relative to the RTOG radiosurgery plan guidelines

  • PDF

A Study on Dose Distribution Programs in Gamma Knife Stereotactic Radiosurgery (감마나이프 방사선 수술 치료계획에서 선량분포 계산 프로그램에 관한 연구)

  • 고영은;이동준;권수일
    • Progress in Medical Physics
    • /
    • v.9 no.3
    • /
    • pp.175-184
    • /
    • 1998
  • The dose distribution evaluation program for the stereotactic radiosurgery treatment planning system using a gamma knife has been built in order to work on PC. And this custom-made dose distribution is compared with that of commercial treatment planning program. 201 source position of a radiation unit were determined manually using a gamma knife collimator draft and geometrical coordinates. Dose evaluation algorithm was modified for our purpose from the original KULA, a commercial treatment planning program. With the composed program, dose distribution at the center of a spherical phantom, 80 mm in diameter, was evaluated into axial, coronal and sagittal image per each collimator. Along with this evaluated data, the dose distribution at a arbitrary point of inside the phantom was compared with those from KULA. Radiochromic film was set up at the center of the phantom and was irradiated by gamma knife, for the verification of dose distribution. In result, the deviation of the dose distribution from that of KULA is less than ${\pm}$3%, which is equivalent to ${\pm}$0.3 mm in 50% isodose distribution for all examined coordinates and film verification. The custom-made program, GPl is proven to be a good tool for the stereotactic radiosurgery treatment planning program.

  • PDF

Verification of Stereotactic Target Point Achieved by Acquisition of MR Image in Actual Treatment Position of Radiosurgery (정위적 방사선 수술시 치료위치에서의 정위적 표적점 확인을 통한 자기공명영상 획득의 정확도 연구)

  • Kim Sang Hwan;Ryu Ji Ok;Kim Baek Kyu;Kim Yong ho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.11 no.1
    • /
    • pp.43-48
    • /
    • 1999
  • Purpose : For practical application of the MR image for stereotactic radiosurgery, the target point achieved by acquisition of MR image in a relatively homogeneous phantom has to agree with the actual isocenter of irradiation in real radiosurgery and the amount of distortion of the MR image should be known. Materials and Methods : A dosimetric film with a random target point was inserted into a radish vertically and horizontally on axis Z and they were fixed with a headring. After image acquisition by stereotactic radiosurgery planning system, we achieved stereotactic coordinate of the target point and examined irradiation using the coordinate acquired as isocenter. After the irradiation, the film in the radish was developed and processed and the degree of coincidence between the target point marked on the film and the center of the radiation distribution. In order to measure the degree of distortion of the MR image in a different way, an acryl phantom was made and punctures were made at intervals of 1 cm and a drop of oil was dropped into it. Then, it was inserted into the radish vertically and horizontally on axis Z to acquire the MR image. Each coordinate was achieved and the estimation of distortion of MR image was made both in vertical and horizontal directions Results : The film from the radio was developed and for the one inserted vertically on axis Z, there was a good coincidence in the discrepancy between the target point marked on the film and the center of the radiation distribution. For the one inserted horizontally, the discrepancy between them was under 0.5 mm. As a result of estimating distortion of MR image using acryl, the discrepancy was under 0.45 mm in the case of the phantom inserted vertically on axis Z, and that of the one inserted horizontally was 1.4 mm. Conclusion : We were able to confirm good coincidence in homogeneous phantom in actual treatment position of radiosurgery using the MR image and the discrepancy measured in the analysis of distortion of the MR image did not exceed the permissible level. Therefore, it was evident the system of the hospital is suitable for radiosurgery using MR image.

  • PDF

A study on uncertainty by passage of time of stereotactic body radiation therapy for spine metastasis cancer (척추 전이암 환자의 정위적방사선치료 시 시간 경과에 따른 불확실성에 관한 연구)

  • Cho, Yong Wan;Kim, Joo Ho;Ahn, Seung Kwon;Lee, Sang Kyoo;Cho, Jeong Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.79-86
    • /
    • 2015
  • Purpose : The purpose of this study was to determine the proper treatment time of stereotactic body radiation therapy for spine metastasis cancer by using the image guidance system of CyberKnife(Accuray Incorporated, USA) which is able to correct movements of patients during the treatment. Materials and Methods : Fifty seven spine metastasis cancer patients who have stereotactic body radiation therapy of CyberKnife participate, 8 of them with cervical spine cancer, 26 of them with thoracic spine cancer, and 23 of them with lumbar spine cancer. X-ray images acquired during the treatment were classified by treatment site. From the starting point of treatment, motion tendency of patients is analyzed in each section which is divided into every 5 minutes. Results : In case of cervical spine, there is sudden increase of variation in 15 minutes after the treatment starts in rotational direction. In case of thoracic spine, there is no significantly variable section. However, variation increases gradually with the passage of time so that it is assumed that noticeable value comes up in approximately 40 minutes. In case of lumbar spine, sharp increase of variation is seen in 20 minutes in translational and rotational direction. Conclusion : Without having corrections during the treatment, proper treatment time is considered as less than 15 minutes for cervical spine, 40 minutes for thoracic spine, and 20 minutes for lumbar spine. If treatment time is longer than these duration, additional patient alignments are required or PTV margin should be enlarged.

  • PDF

Stereotactic Vacuum-Assisted Core Biopsy Results for Non-Palpable Breast Lesions

  • Agacayak, Filiz;Ozturk, Alper;Bozdogan, Atilla;Selamoglu, Derya;Alco, Gul;Ordu, Cetin;Pilanci, Kezban Nur;Killi, Refik;Ozmen, Vahit
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5171-5174
    • /
    • 2014
  • Background: The increase in breast cancer awareness and widespread use of mammographic screening has led to an increased detection of (non-palpable) breast cancers that cannot be discovered through physical examination. One of the methods used in the diagnosis of these cancers is vacuum-assisted core biopsy, which prevents a considerable number of patients from undergoing surgical procedures. The aim of this study was to present the results of stereotactic vacuum-assisted core biopsy for suspicious breast lesions. Materials and Methods: Files were retrospectively scanned and data on demographic, radiological and pathological findings were recorded for patients who underwent stereotactic vacuum-assisted core biopsy due to suspicious mammographic findings at the Interventional Radiology Centre of the Florence Nightingale Hospital between January 2010, and April 2013. Statistical analysis was carried out using Pearson's Chi-square, continuity correction, and Fisher's exact tests. Results: The mean age of the patients was 47 years (range: 36-70). Biopsies were performed due to BIRADS 3 lesions in 8 patients, BIRADS 4 lesions in 77 patients, and BIRADS 5 lesions in 3 patients. Mammography elucidated clusters of microcalcifications in 73 patients (83%) and focal lesions (asymmetrical density, distortion) in 15 patients (17%). In terms of complications, 1 patient had a hematoma, and 2 patients had ecchymoses (3/88; 3.3%). The histopathologic results revealed benign lesions in 63 patients (71.6%) and malignant lesions in 25 patients (28.4%). The mean duration of the procedure was 37 minutes (range: 18-55). Although all of the BIRADS 3 lesions were benign, 22 (28.6%) of the BIRADS 4 lesions and all of the BIRADS 5 lesions were malignant. Among the malignant cases, 80% were in situ, and 20% were invasive carcinomas. These patients underwent surgery. Conclusions: In cases where non-palpable breast lesions are considered to be suspicious in mammography scans, the vacuum-assisted core biopsy method provides an accurate histopathologic diagnosis thus preventing a significant number of patients undergoing unnecessary surgical procedures.

Improvement of a Planning Technique Based on Heuristic Target Shaping for Stereotactic Radiosurgery (방사선 수술시 경험적 표적 근사화에 근거한 최적화 방법 개선)

  • Oh Seungjong;Choi Kyoung-Sik;Song Ju-Young;Suh Tae-Suk
    • Progress in Medical Physics
    • /
    • v.16 no.4
    • /
    • pp.176-182
    • /
    • 2005
  • Stereotactic radiosurgery (SRS) is a technique to deliver a high dose to a target region and a low dose to a critical organ through only one or a few irradiation. The SRS must be planned exactly. Currently the surgery plan is peformed by trial and error method. There are many questions about the reliability and reproducibility of the plan result. This study Improve each step of the Oh's method based on heuristic target shaping to obtain the better result. The target was reconstructed using cylinders with same height and the neighbored cylinders were combined according to the difference of each center and diameter. Then, spheres were packed within each cylinders by the packing rules. Two virtual targets were used to compare this method with Oh's method. As a result, the numbers of isocenter were successfully reduced - more than $35\%$ and $26\%$ - without serious differences of proscription isodose to tumour volume ratio (PITV) and maximum dose to proscription dose ratio (MDPD). This technique using cylinder piling and sphere packing will be a helpful tool to planner in stereotactic radiosurgery.

  • PDF

Verification of Dose Distribution for Stereotactic Radiosurgery with a Linear Accelerator (선형가속기를 이용한 방사선 수술의 선량분포의 실험적 확인)

  • Park Kyung Ran;Kim Kye Jun;Chu Sung Sil;Lee Jong Young;Joh Chul Woo;Lee Chang Geol;Suh Chang Ok;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.11 no.2
    • /
    • pp.421-430
    • /
    • 1993
  • The calculation of dose distribution in multiple arc stereotactic radiotherapy is a three-dimensional problem and, therefore, the three-dimensional dose calculation algorithm is important and the algorithm's accuracy and reliability should be confirmed experimentally. The aim of this study is to verify the dose distribution of stereotactic radiosurgery experimentally and to investigate the effect of the beam quality, the number of arcs of radiation, and the tertiary collimation on the resulting dose distribution. Film dosimetry with phantom measurements was done to get the three-dimensional orthogonal isodose distribution. All experiments were carried out with a 6 MV X-ray, except for the study of the effects of beam energy on dose distribution, which was done for X-ray energies of 6 and 15 MV. The irradiation technique was from 4 to 11 arcs at intervals of from 15 to 45 degrees between each arc with various field sizes with additional circular collimator. The dose distributions of square field with linear accelerator collimator compared with the dose distributions obtained using circular field with tertiary collimator. The parameters used for comparing the results were the shape of the isodose curve, dose fall-offs fom $90\%$ to $50\%$ and from $90\%\;to\;20\%$ isodose line for the steepest and shallowest profile, and $A=\frac{90\%\;isodose\;area}{50\%\;isodose\;area-90\%\;isodose\;area}$(modified from Chierego). This ratio may be considered as being proportional to the sparing of normal tissue around the target volume. The effect of beam energy in 6 and 15 MV X-ray indicated that the shapes of isodose curves were the same. The value of ratio A and the steepest and shallowest dose fall-offs for 6 MV X-ray was minimally better than that for 15 MV X-ray. These data illustrated that an increase in the dimensions of the field from 10 to 28 mm in diameter did not significantly change the isodose distribution. There was no significant difference in dose gradient and the shape of isodose curve regardless of the number of arcs for field sizes of 10, 21, and 32 mm in diameter. The shape of isodose curves was more circular in circular field and square in square field. And the dose gradient for the circular field was slightly better than that for the square field.

  • PDF

Accuracy Evaluation of CyberKnife $Synchrony^{TM}$ Respiratory Tracking System Using Phantom (Phantom을 이용한 사이버나이프 $Synchrony^{TM}$ 호흡 추적장치의 정확성 평가)

  • Kim, Gha-Jung;Bae, Seok-Hwan;Lim, Chang-Seon;Kim, Chong-Yeal
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.3
    • /
    • pp.137-143
    • /
    • 2009
  • This study was conducted to evaluate the accuracy of CyberKnife $Synchrony^{TM}$ respiratory tracking system which was applied to Stereotactic Radiosurgery (SRS) for moving tumors in chest and abdomen with breathing motion. For accurate evaluation, gold fiducial marks were implanted into a moving phantom. The moving phantom was a cube imbedding an acryl ball as a target. The acryl ball was prescribed to 20 Gy at 70% of isodose curve in a virtual treatment and radiochromic films were inserted into the acryl ball for dose verification and tracking accuracy evaluation. The evaluation of position tracking consists of two parts: fiducial mark tracking in a stationary phantom and $Synchrony^{TM}$ respiratory tracking in a moving phantom. Each measurement was done in three directions and was repeated to 5 times. Range of position error was 0.1957 mm to 0.6520 mm in the stationary phantom and 0.4405 mm to 0.7665 mm in the moving phantom. Average position error was 0.3926 mm and 0.5673 mm in the stationary phantom and the moving phantom respectively. This study evaluates the accuracy of CyberKnife $Synchrony^{TM}$ Respiratory tracking system, and confirms the usefulness when it's used for Stereotactic Radiosurgery of body organs.

The Evaluation of Non-Coplanar Volumetric Modulated Arc Therapy for Brain stereotactic radiosurgery (뇌 정위적 방사선수술 시 Non-Coplanar Volumetric Modulated Arc Therapy의 유용성 평가)

  • Lee, Doo Sang;Kang, Hyo Seok;Choi, Byoung Joon;Park, Sang Jun;Jung, Da Ee;Lee, Geon Ho;Ahn, Min Woo;Jeon, Myeong Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.9-16
    • /
    • 2018
  • Purpose : Brain Stereotactic Radiosurgery can treat non-invasive diseases with high rates of complications due to surgical operations. However, brain stereotactic radiosurgery may be accompanied by radiation induced side effects such as fractionation radiation therapy because it uses radiation. The effects of Coplanar Volumetric Modulated Arc Therapy(C-VMAT) and Non-Coplanar Volumetric Modulated Arc Therapy(NC-VMAT) on surrounding normal tissues were analyzed in order to reduce the side effects caused fractionation radiation therapy such as head and neck. But, brain stereotactic radiosurgery these contents were not analyzed. In this study, we evaluated the usefulness of NC-VMAT by comparing and analyzing C-VMAT and NC-VMAT in patients who underwent brain stereotactic radiosurgery. Methods and materials : With C-VMAT and NC-VMAT, 13 treatment plans for brain stereotactic radiosurgery were established. The Planning Target Volume ranged from a minimum of 0.78 cc to a maximum of 12.26 cc, Prescription doses were prescribed between 15 and 24 Gy. Treatment machine was TrueBeam STx (Varian Medical Systems, USA). The energy used in the treatment plan was 6 MV Flattening Filter Free (6FFF) X-ray. The C-VMAT treatment plan used a half 2 arc or full 2 arc treatment plan, and the NC-VMAT treatment plan used 3 to 7 Arc 40 to 190 degrees. The angle of the couch was planned to be 3-7 angles. Results : The mean value of the maximum dose was $105.1{\pm}1.37%$ in C-VMAT and $105.8{\pm}1.71%$ in NC-VMAT. Conformity index of C-VMAT was $1.08{\pm}0.08$ and homogeneity index was $1.03{\pm}0.01$. Conformity index of NC-VMAT was $1.17{\pm}0.1$ and homogeneity index was $1.04{\pm}0.01$. $V_2$, $V_8$, $V_{12}$, $V_{18}$, $V_{24}$ of the brain were $176{\pm}149.36cc$, $31.50{\pm}25.03cc$, $16.53{\pm}12.63cc$, $8.60{\pm}6.87cc$ and $4.03{\pm}3.43cc$ in the C-VMAT and $135.55{\pm}115.93cc$, $24.34{\pm}17.68cc$, $14.74{\pm}10.97cc$, $8.55{\pm}6.79cc$, $4.23{\pm}3.48cc$. Conclusions : The maximum dose, conformity index, and homogeneity index showed no significant difference between C-VMAT and NC-VMAT. $V_2$ to $V_{18}$ of the brain showed a difference of at least 0.5 % to 48 %. $V_{19}$ to $V_{24}$ of the brain showed a difference of at least 0.4 % to 4.8 %. When we compare the mean value of $V_{12}$ that Radione-crosis begins to generate, NC-VMAT has about 12.2 % less amount than C-VMAT. These results suggest that if NC-VMAT is used, the volume of $V_2$ to $V_{18}$ can be reduced, which can reduce Radionecrosis.

  • PDF