• Title/Summary/Keyword: Stereotactic

Search Result 408, Processing Time 0.022 seconds

Periventricular Germinoma - Case Report - (뇌실주위 배아종 - 증례보고 -)

  • Kwon, Young-Yi;Park, Bong-Jin;Sung, Jung-Nam;Kim, Young-Joon;Cho, Maeng Ki
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.10
    • /
    • pp.1245-1249
    • /
    • 2001
  • Germinomas of the central nervous system are rare embryonal tumors(accounting for less than 1% of intracranial neoplasms) that may be located in the pineal region, in the floor of the third ventricle, or in the suprasellar area. We report a case of germinoma developed in periventricular deep white matter without pineal region tumors or suprasellar masses. The 19-year-old male patient presented with slowly progressing headache, dizziness, photophobia, and dysarthria. Initial brain MRI revealed a irregular and dense enhancement from lateral ventricles to 4th ventricle. The stereotactic biopsy of tumor and histologic examination revealed the germinoma. Craniospinal axis radiation therapy was performed. After radiation therapy patient was improved and no neurologic sequelae was seen at discharge. Periventricular germinomas without pineal or suprasellar lesion are very rare. The radiation therapy, as in our case, is beneficial as with other intracranial germinomas. Stereotactic biopsy of periventricular germinoma provides precise pathologic diagnosis and thus allows more specific management.

  • PDF

Comparison of Target Approximation Techniques for Stereotactic Radiosurgical Plan

  • Choi, Kyoung-Sik;Oh, Seong-Jong;Lee, Jeong-Woo;Choe, Bo-Young;Kim, Moon-Chan;Chung, Hyun-Tai;Suh, Tae-Su
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2005.04a
    • /
    • pp.47-50
    • /
    • 2005
  • The aim of radiosurgery cures a patient to deliver the lower dose at the normal organ and the higher dose at the tumor. Therefore accuracy of the dose is required to gain effect of radiosurgery in surgical planning. In this paper, we developed the methods of target approximation for a fast treatment planning. Nominally, the stereotactic radiosurgery(SRS) using Linac and Gamma knife produces spherical dose distribution through circular collimators using multiple arcs and 201 holes on semi-spherical helmet by $^{60}Co$. We developed an automatic radiosurgical plan about spherical packing arrangement. To automatically plan the SRS, new planning methods based on cylinder and cube structure for target shaping was developed. This approach using heuristic and stochastic algorithm is a useful radiosurgical plan without restrictions in the various tumor shapes and the different modalities.

  • PDF

Optimum Field Size for the Whole Body Stereotactic Radiosurgery (전신 정위 방사선 치료시의 적정 조사면 크기)

  • 이병용;민철기;정원규;최은경
    • Progress in Medical Physics
    • /
    • v.13 no.1
    • /
    • pp.15-20
    • /
    • 2002
  • Optimum field size for the whole body stereotactic radiosurgery was studied. Dose distributions from the various sizes of targets (diameter 1cm to 7cm, icm interval) were used for this study. Planing scores, expressed as the Target Coverage Index (TCI), were calculated for various target Margin ranged 0cm to 0.5cm. Highest scores were obtained for no Margin to the target size. The target Margin -0.5cm to 0cm to the target showed best TCI the cases of the target size larger than 6cm diameter. No Margin or 0.5cm Margin generated best TCI for less than 2cm cases. Prescription to 80~90% gives best results.

  • PDF

The improvement of exactitude of stereotactic surgery based on personal computer (개인용 컴퓨터를 이용한 뇌정위 수술의 정확도의 개선)

  • Kim, J.S.;Park, H.S.;Choi, K.H.;Chae, E.B.;Lee, Y.H.;Kim, S.I.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.275-278
    • /
    • 1996
  • Accuracy and reproducibility of coordinates, angles/areas and volume measurements are the mai goal of imaging-guided stereotactic systems. Errors in measurements are due to pitfalls in a present systems. Factors responsible for inaccuracy and variability on measurements are inappropriate display window settings, unequal spatial resolution, display/film distortion, inappropriate slice width, lack of isocentricity between gantry and frame, and nonparallelism between frame and scanning plan. The most important factor responsible for errors when using stereotactic frames is the nonparallel relationship to the plane of scanning. For the solution of above problem, author developed a computer program for the measurement of the coordinates of intracerebral target, which is operated using the personal computer. This program can calculate the actual spatial coordinates regardless of the inappropriate parallelism between frame and scanning plane and decrease the range of errors of measurements.

  • PDF

Stereotactic Radiosurgery

  • Chung, Hyun-Tai;Lee, Dong-Joon
    • Progress in Medical Physics
    • /
    • v.31 no.3
    • /
    • pp.63-70
    • /
    • 2020
  • Stereotactic radiosurgery is one of the most sophisticated forms of modern advanced radiation therapy. Unlike conventional fractionated radiotherapy, stereotactic radiosurgery uses a high dose of radiation with steep gradient precisely delivered to target lesions. Lars Leksell presented the principle of radiosurgery in 1951. Gamma Knife® (GK) is the first radiosurgery device used in clinics, and the first patient was treated in the winter of 1967. The first GK unit had 179 cobalt 60 sources distributed on a hemispherical surface. A patient could move only in a single direction. Treatment planning was performed manually and took more than a day. The latest model, Gamma Knife® IconTM, shares the same principle but has many new dazzling characteristics. In this article, first, a brief history of radiosurgery was described. Then, the physical properties of modern radiosurgery machines and physicists' endeavors to assure the quality of radiosurgery were described. Intrinsic characteristics of modern radiosurgery devices such as small fields, steep dose distribution producing sharp penumbra, and multi-directionality of the beam were reviewed together with the techniques to assess the accuracy of these devices. The reference conditions and principles of GK dosimetry given in the most recent international standard protocol, International Atomic Energy Agency TRS 483, were shortly reviewed, and several points needing careful revisions were highlighted. Understanding the principles and physics of radiosurgery will be helpful for modern medical physicists.

Stereotactic Radiation Therapy for Nasal Carcinoma with Cribriform Plate Destruction in Three Dogs: A Serial CT Study

  • Soyon An;Gunha Hwang;Moonyeong Choi;Chan Huh;Young-Min Yoon;Hee Chun Lee;Tae Sung Hwang
    • Journal of Veterinary Clinics
    • /
    • v.40 no.2
    • /
    • pp.139-146
    • /
    • 2023
  • Three dogs were referred with epistaxis and facial deformity. Computed tomography (CT) scan identified masses in the bilateral nasal cavity with soft tissue attenuation and contrast enhancement. These masses had caused adjacent bones lysis, especially lysis of cribriform plate that extended to the intracranial region. Base on histopathology and CT imaging results, tumors were diagnosed as nasal carcinomas at stage 4. Three dogs were treated with stereotactic radiation therapy (SRT). These dogs received 30-35 Gy from 3-5 daily treatments (7-10 Gy per treatment). The sizes of tumors decreased the most on follow-up CT images at one month after treatment. Recurrence was confirmed between 3 and 5 months after completing SRT. The survival time of dogs treated with SRT were 110, 190, and 210 days, respectively. This study confirmed that SRT could treat canine nasal carcinomas with cribriform plate lysis without causing serious radiation toxicities. Follow-up CT examination is considered at 1 month and 3 to 6 months after SRT to accurately evaluate the prognosis and the timing of recurrence.

Dose Characteristics of Stereotactic Radiosurgery in High Energy Linear Accelerator Proton Beam (고에너지 선형가속기에 의한 입체방사선수술의 선량특성)

  • Choi, Tae-Jin;Kim, Ok-Bae
    • Radiation Oncology Journal
    • /
    • v.10 no.2
    • /
    • pp.137-145
    • /
    • 1992
  • Three-dimensional dose calculations based on CT images are fundamental to stereotactic radiosurgery for small intracranial tumor. In our stereotactic radiosurgery program, irradiations have been performed using the 6 MV photon beam of linear accelerator after stereotactic CT investigations of the target center through the beam's-eye view and the coordinates of BRW frame converted to that of radiosurgery. Also we can describe the tumor diameter and the shape in three dimensional configuration. Non-coplanar irradiation technique was developed that it consists of a combination of a moving field with a gantry angle of $140^{\circ}$, and a horizontal couch angle of $200^{\circ}C$ around the isocenter. In this radiosurgery technique, we provide the patient head setup in the base-ring holder and rotate around body axis. The total gantry moving range shows angle of 2520 degrees via two different types of gantry movement in a plane perpendicular to the axis of patient. The 3-D isodose curves overlapped to the tumor contours in screen and analytic dose profiles in calculation area were provided to calculate the thickness of $80\%$ of tumor center dose to $20\%$ of that. Furtheremore we provided the 3-D dose profiles in entire calculation plane. In this experiments, measured isodose curves in phantom irradiation have shown very similiar to that of computer generations.

  • PDF

Target Localization and Dose Delivery Verification used a Water Phantom in Stereotactic Radiosurgery (정위적 방사선 수술에서 물팬텀을 이용한 목표점 및 전달 선량확인)

  • Kang, Young-Nam;Lee, Dong-Jun;Kwon, Soo-Il;Kwon, Yang
    • Progress in Medical Physics
    • /
    • v.7 no.2
    • /
    • pp.19-28
    • /
    • 1996
  • It is important that the precise decision of the region and the accurate delivery of radiation dose required for treatment in the stereotactic radiosurgery. In this research, radiosurgery was carried with Leksell streotactic frame(LSF) which is especially developed water phantom to verify in experiment. Leksell Gamma Knife and LSF are used in radiosurgery is the spherical water phantom has the thickness of 2 mm, the radius of 160mm. The film for target localization and ionchamber for dose delivery was used in measurement instruments We compare the coordinate of target which is initialized by biplannar film with simple X-ray to the coordinate of film measured directly. The calculated dose by computer simulation and the measured dose by ionization chamber are compared. In this research, the target localization has the range ${\pm}$0.3mm for the acceptable error range and the absolute dose is :${\pm}$0.3mm for the acceptable error range. This research shows that the values measured by using the especially manufactured phantom are included the acceptable error range. Thus, this water phantom will be used continuously in the periodic quality assurance of Gamma Knife Unit and Leksell Stereotactic Frame.

  • PDF

Search of Characteristic for Dose Distribution Presented by Multi­isocentric Stereotactic Radiosurgical Plan Using Linear Accelerator (선형 가속기를 이용한 정위적 방사선 수술시 병소내 선량분포의 특성조사)

  • 최경식;오승종;이형구;최보영;전흥재;서태석
    • Progress in Medical Physics
    • /
    • v.14 no.4
    • /
    • pp.225-233
    • /
    • 2003
  • The goal of a radiation treatment plan is to deliver a homogeneous dose to a target with minimal irradiation of the adjacent normal tissues. Dose uniformity is especially important for stereotactic radiosurgery using a linear accelerator. The dose uniformity and high dose delivery of a single spherical dose distribution exceed 70%. This also results with a similar stereotactic radiosurgical plan using a Gamma Knife. The dose distribution produced in a stereotactic radiosurgical plan using a Gamma Knife and Linear accelerator is spherical, and the application of the sphere packing arrangement in a real radiosurgical plan requires much time and skill. In this study, we found a characteristic of dose distribution with transformation of beam parameters that must be considered in a radiosurgical plan for effective radiosurgery. First, we assumed a cylinder type tumor model and a cube type tumor model. Secondly, the results of the tumor models were compared and analyzed with dose profiles and DVH_(Dose Volume Histogram) representative dose distribution. We found the optimal composition of beam parameters_(i.e. collimator size, number of isocenter, gap of isocenters etc.), which allowed the tumor models to be involved in the isodose curve at a high level. In conclusion, the characteristics found in this study are helpful for improving the effectiveness and speed of a radiosurgical plan for stereotactic radiosurgery.

  • PDF

Verification of Stereotactic Target Point Achieved by Acquisition of MR Image in Actual Treatment Position of Radiosurgery (정위적 방사선 수술시 치료위치에서의 정위적 표적점 확인을 통한 자기공명영상 획득의 정확도 연구)

  • 윤형근;신교철;김영식
    • Progress in Medical Physics
    • /
    • v.9 no.2
    • /
    • pp.89-94
    • /
    • 1998
  • To make practical application of the MR image for stereotactic radiosurgery, the target point-achieved by acquisition of MR image in stereotactic radiosurgery planning system must agree with the actual isocenter of irradiation in real treatment. And the amount of distortion of the MR image must be known to make a correction for the agreement. A radish containing abundant water content was chosen as a homogeneous phantom for the purpose of verification of the agreement in this experiment. A dosimetric film was firmly attached to the small specially fabricated acryl plate and needle puncture was made through the film just into the acryl plate and a drop of oil was dropped into the hole of the film. The acryl plate with film was inserted into the radish and the dorp of oil represented the target point in MR image. After the image acquisition by stereotatic radiosurgery planning system, we achieved stereotactic coordinate of the target point represented by the oil drop. And we proceeded to actual irradiation to the target point according to the procedure of stereotactic radiosurgery. After the irradiation, the film in the radish was developed and processed and the degree of coincidence between the center of the radiation distribution and the target point represented by the hole in the film was measured. The discrepancy between two points was under 0.5 mm. so we could confirm good coincidence in homogeneous phantom such as radish. On the other hand, authors tried to use our home-made device for estimation of distortion of MR image.

  • PDF