Proceedings of the Korean Information Science Society Conference
/
2008.06c
/
pp.555-560
/
2008
두 장의 2차원 영상을 가지고 3차원을 재구성하기 위해서는 스테레오 정합을 이용한다. 이러한 이유로 그 동안에 많은 스테레오 정합에 대한 연구가 진행되었다. 스테레오 정합은 컴퓨터 기술의 발전과 더불어 좀 더 빠르고 높은 정확성을 보이고 있다. 하지만 속도와 정확성을 동시에 만족시키면서 대형영상에서도 동작할 수 있게 메모리을 적게 사용하는 방법은 많지가 않다. 본 논문에서는 이런 요구 조건을 만족시키기 위하여 새로운 스테레오 정합방법을 제시한다. 우리가 제시하는 새로운 방법은 다중 방향성 Greedy 알고리즘과 RANSAC을 반복적으로 사용하여 영상전체에 대한 스테레오 정합을 시도하는 방법이다. 우선 Greedy 알고리즘을 이용하여 여러 방향의 scan-line을 따라 깊이값 영상을 구한다. 그리고 이 여러 장의 깊이값 영상들의 분포를 RANSAC을 이용하여 신뢰영역을 찾아낸다. 구해진 신뢰영역을 바탕으로 Greedy 알고리즘과 RANSAC을 수 차례 반복하여 신뢰영역을 확장해 나가면 최종 깊이값 영상을 얻는다. 우리가 제안하는 알고리즘은 적은 메모리로도 큰 영상의 정합이 가능하고, 속도와 정확도 측면에서도 우수한 결과를 보인다.
As the smart media becomes more popular, the demand for high-quality 3D images and depth maps is increasing. However, performance of the current technologies to acquire depth maps is not sufficient. The depth maps from stereo matching methods have low accuracy in homogeneous regions. The depth maps from depth cameras are noisy and have low-resolution due to technical limitations. In this paper, we introduce the state-of-the-art algorithms for depth map enhancement and up-sampling from conventional methods using only depth maps to the latest algorithms referring to both depth maps and their corresponding color images. We also present depth map enhancement algorithms for hybrid camera systems in detail.
Kim, Deukhyeon;Choi, Jinwook;Oh, Changjae;Sohn, Kwanghoon
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2012.07a
/
pp.83-86
/
2012
본 논문에서는 다양한 변이 추정 방식 중 영역기반(Area-based) 알고리듬과 특정기반(Feature-based) 알고리듬을 결합한 하이브리드(Hybrid) 변이추정 알고리듬을 제안한다. 제안하는 알고리듬은 Features from Accelerated Segment Test(FAST) 코너 점 추출기[2]를 이용하여 좌, 우 영상 각각의 특징 점을 추출한 후, 특징 점들의 정보를 이용한 스테레오 정함을 통해 신뢰도 높은 초기 변이지도(Disparity map)를 생생하게 된다. 그러나 생성된 초기 변이지도는 조밀하지 못하므로, 조밀한 변이 지도를 획득하기 위해 특징점이 추출된 영역에 대해서는 추정된 초기 변이 값을 이웃 픽셀과의 색 유사도를 고려하여 전파시키고 특징 점이 추출되지 않은 영역에 대해서는 이진 윈도우(Binary window)를 활용한 영역기반 변이추정 알고리듬[1]을 이용하여 변이 값을 추정한다. 이를 통해, 제안 알고리듬은 특징 기반 알고리듬에서 발생할 수 있는 보간법 문제를 해결함과 동시에 신뢰도가 높은 초기 변이지도를 사용함으로써, 영역 기반 알고리듬의 정합 오차를 줄여 신뢰도 높은 변이지도를 생생할 수 있다. 실험 결과 추정된 초기 변이지도는 ground truth와 비교 시 약 99%이상의 정확도를 보이며, 특징 점이 추출된 영역에서 기존의 영역기반 알고리듬보다 더 정확한 변이 값이 추정되었음을 확인하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2012.07a
/
pp.140-141
/
2012
최근 영상분야의 키워드는 초고품질화, 초실감화, 스마트화로 대표될 수 있다. 그 중에서도 무안경식 3D는 초실감화를 이루기 위한 핵심응용분야 중 하나이다. 하지만 무안경식 3D 단말기가 성공적으로 보급되기 위해서는 연구되어야 할 분야가 여전히 존재한다. 그 중에서도 본 논문에서는 고화질의 무안경식 3D 스마트 콘텐츠 제작에 필요한 자동 스테레오 정합 기법을 제안하였다. 이전까지 연구된 변이지도 추출을 위한 알고리즘은 전역적 최적화 방법을 사용할 시 영상의 해상도와 깊이 정도에 따른 연산량의 증가로 많은 수행시간이 요구되었다. 또한 좌/우 영상의 intensity 정보만으로는 정확한 변이지도 추출이 어렵다는 한계점이 존재하였다. 이러한 이유로 본 논문에서는 스트림 영상에서 프레임 간의 정보를 이용하여 신뢰지도와 경계정보를 생성하였으며 belief propagation 스테레오 정합 방법을 이용하여 고화질의 정확한 변이지도를 추출하였다. 또한, 알고리즘의 연산량에 대한 문제를 해결하기 위한 고속화 방안으로, 최근 많은 연구가 이루어지고 있는 GPU(graphics processing units) 를 이용한 병렬처리를 연구하였다. 마지막으로 연구결과의 신뢰성을 향상하기 위하여 다양한 데이터를 이용한 실험을 통해 고화질의 영상정보를 고속으로 추출할 수 있음을 확인하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2015.11a
/
pp.63-66
/
2015
3차원 영상을 생성하기 위해 스테레오 매칭을 통해 깊이 정보를 획득한다. 이때 발생하는 경계영역과 텍스처가 부족한 부분의 깊이정보 부정확성 문제를 해결하기 위해 영상 분할 기반 스테레오 매칭 방법을 제안한다. 일반적으로 사용하는 윈도우 기반 스테레오 매칭 결과를 기반으로 분할된 영상 내에서 최적의 변위 값을 재 할당함으로서 깊이정보의 정확성을 향상시킬 수 있다. Mean-shift는 참조 영상에서 화소 간 평균값 차이가 최대가 되는 영역들을 반복적으로 찾는다. 유사한 평균값을 갖는 영역들을 기반으로 영상을 분할하는 것을 Mean-shift를 이용한 영상분할 이라고 한다. 분할된 영상은 각 영역을 대표하는 패치 구조를 가지고 있어 참조 영상에 포함되어있는 잡음에 강인한 특성을 지닌다. 스테레오 매칭을 통해 화소별로 변위 값을 할당해주는 대신, 분할된 영상을 이용하여 각 분할 영역에 동일한 변위 값을 할당한다. 분할된 영상에 동일한 변위 정보를 할당할 경우 객체와 배경의 경계영역에서 잘못된 변위 값이 할당되는 경우가 발생한다. 이러한 경계 영역의 변위정보 부정확성을 보완하기 위해 화소의 기울기 항을 비용 값 계산 과정에 추가하여 단점을 보완한다. 최종 비용 값 계산을 통해 획득한 초기 변위 지도에 중간 값 필터를 적용하여 분류된 영역에 동일한 변위 값을 할당한다. 제안한 방법을 적용하여 경계영역의 정확도가 향상된 최종 변위 지도를 획득한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2016.11a
/
pp.94-95
/
2016
스테레오 정합은 서로 다른 두 시점을 갖는 스테레오 영상으로부터 객체의 깊이값을 예측한다. 이 방법은 객체가 카메라로 부터 멀리 떨어질수록 두 시점 사이에 큰 변위차를 갖는 양안시차 특성을 이용해 깊이값을 구한다. 일반적으로 스테레오 정합은 촬영한 두 영상의 조명 변화 및 노출 정도가 같다는 조건으로 수행된다. 하지만 실내 또는 실외에서 실제로 영상을 촬영하면 조명 및 햇빛의 위치 그리고 카메라의 특성에 따라 촬영된 스테레오 영상의 밝기가 서로 달라지는 경우가 발생하게 된다. 이처럼 두 영상의 밝기차를 고려하지 않고 스테레오 정합을 하게 되면 정확한 깊이값을 예측하기 어렵다. 이러한 문제를 개선하기 위해 조명 변화에 강인한 ANCC (Adaptive Normalized Cross Correlation)가 제안되었다. 이 방법은 영상 속 화소들의 색상 모델을 이용해 조명변화의 영향을 받는 요소들을 제거함으로써 다양한 밝기변화 속에서도 안정적으로 스테레오 정합을 수행할 수 있도록 한다. 하지만 ANCC는 수행과정에서 각 화소마다 양방향 필터 (Bilateral Filter)가 적용되는 등 높은 복잡도를 갖는다는 단점이 있다. 본 논문에서는 기존의 ANCC 보다 복잡도가 낮으면서 밝기변화에도 안정적인 정합 결과를 갖기 위해 Census 변환의 이진 정보를 이용한 스테레오 정합 방법을 제안한다.
In this paper range measurement systems are designed using an ultrasonic sensor and a camera. An ultrasonic sensor provides the range measurement to a target quickly and simply but its low resolution is a disadvantage. We tackle this problem by employing a camera. Instead using a stereoscopic sensor, which is widely used for 3D sensing but requires a computationally intensive stereo matching, the range is measured by focusing and structured lighting. In focusing a straightforward focusing measure named as MMDH(min-max difference in histogram) is proposed and compared with existing techniques. In the method of structure lighting, light stripes projected by a beam projector are used. Compared to those using a laser beam projector, the designed system can be constructed easily in a low-budget. The system equation is derived by analysing the sensor geometry. A sensing scenario using the systems designed is in two steps. First, when better accuracy is required, measurements by ultrasonic sensing and focusing of a camera are fused by MLE(maximum likelihood estimation). Second, when the target is in a range of particular interest, a range map of the target scene is obtained by using structured lighting technique. The systems designed showed measurement accuracy up to 0.3[mm] approximately in experiments.
In stereo vision, when we use two parallel axis images, small portion of object is contained and B/H(Base-line to Height) ratio is limited due to the size of object and depth information is inaccurate. To overcome these difficulities we take a non-parallel axis image which is rotated $\theta$ about y-axis and match other parallel-axis image. Epipolar lines of non-parallel axis image are not same as those of parallel-axis image and we can't match these two images directly. In this paper, we transform the non-parallel axis image geometrically with camera parameters, whose epipolar lines are alingned parallel. NCC(Normalized Cross Correlation) is used as match measure, area-based matching technique is used find correspondence and 9$\times$9 window size is used, which is chosen experimentally. Focal length which is necessary to get depth information of given object is calculated with least-squares method by CCD camera characteristics and lenz property. Finally, we select 30 test points from given object whose elevation is varied to 150 mm, calculate heights and know that height RMS error is 7.9 mm.
In this paper, we propose an algorithm that estimates the location of lunar rover using IMU and vision system instead of the dead-reckoning method using IMU and encoder, which is difficult to estimate the exact distance due to the accumulated error and slip. First, in the lunar environment, magnetic fields are not uniform, unlike the Earth, so only acceleration and gyro sensor data were used for the localization. These data were applied to extended kalman filter to estimate Roll, Pitch, Yaw Euler angles of the exploration rover. Also, the lunar module has special color which can not be seen in the lunar environment. Therefore, the lunar module were correctly recognized by applying the HSV color filter to the stereo image taken by lunar rover. Then, the distance between the exploration rover and the lunar module was estimated through SIFT feature point matching algorithm and geometry. Finally, the estimated Euler angles and distances were used to estimate the current position of the rover from the lunar module. The performance of the proposed algorithm was been compared to the conventional algorithm to show the superiority of the proposed algorithm.
Utilization and demand of UAV (unmanned aerial vehicle) for the generation of 3D city model are increasing. In this study, we performed an experiment to adjustment position/orientation of UAV with incomplete attitude information and to extract point cloud data. In order to correct the attitude of the UAV, the rotation angle was calculated by using the continuous position information of UAV movements. Based on this, the corrected position/orientation information was obtained by applying IBA (Incremental Bundle Adjustment) based on photogrammetry. Each pair was transformed into an epipolar image, and the MDR (Multi-Dimensional Relaxation) technique was applied to obtain high precision DSM. Each extracted pair is aggregated and output in the form of a single point cloud or DSM. Using the DJI inspire1 and Phantom4 images, we can confirm that the point cloud can be extracted which expresses the railing of the building clearly. In the future, research will be conducted on improving the matching performance and establishing sensor models of oblique images. After that, we will continue the image processing technology for the generation of the 3D city model through the study of the extraction of 3D cloud It should be developed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.