• Title/Summary/Keyword: Stereo Satellite Images

Search Result 137, Processing Time 0.031 seconds

PARALLAX ADJUSTMENT FOR REALISTIC 3D STEREO VIEWING OF A SINGLE REMOTE SENSING IMAGE

  • Kim, Hye-Jin;Choi, Jae-Wan;Chang, An-Jin;Yu, Ki-Yun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.452-455
    • /
    • 2007
  • 3D stereoscopic viewing of large scale imagery, such as aerial photography and satellite images, needs different parallaxes relative to the display scale. For example, when a viewer sees a stereoscopic image of aerial photography, the optimal parallax of its zoom-in image should be smaller than that of its zoom-out. Therefore, relative parallax adjustment according to the display scale is required. Merely adjusting the spacing between stereo images is not appropriate because the depths of the whole image are either exaggerated or reduced entirely. This paper focuses on the improving stereoscopic viewing with a single remote sensing image and a digital surface model (DSM). We present the parallax adjustment technique to maximize the 3D realistic effect and the visual comfort. For remote sensing data, DSM height value can be regarded as disparity. There are two possible kinds of methods to adjust the relative parallax with a single image performance. One is the DSM compression technique: the other is an adjustment of the distance between the original image and its stereo-mate. In our approach, we carried out a test to evaluate the optimal distance between a single remote sensing image and its stereo-mate, relative to the viewing scale. Several synthetic stereo-mates according to certain viewing scale were created using a parallel projection model and their anaglyphs were estimated visually. The occlusion of the synthetic stereo-mate was restored by the inpainting method using the fields of experts (FoE) model. With the experiments using QuickBird imagery, we could obtain stereoscopic images with optimized parallax at varied display scales.

  • PDF

A METHOD FOR ADJUSTING ADAPTIVELY THE WEIGHT OF FEATURE IN MULTI-DIMENSIONAL FEATURE VECTOR MATCHING

  • Ye, Chul-Soo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.772-775
    • /
    • 2006
  • Muilti-dimensional feature vector matching algorithm uses multiple features such as intensity, gradient, variance, first or second derivative of a pixel to find correspondence pixels in stereo images. In this paper, we proposed a new method for adjusting automatically the weight of feature in multi-dimensional feature vector matching considering sharpeness of a pixel in feature vector distance curve. The sharpeness consists of minimum and maximum vector distances of a small window mask. In the experiment we used IKONOS satellite stereo imagery and obtained accurate matching results comparable to the manual weight-adjusting method.

  • PDF

Improvements on the Three-Dimensional Positioning of High Resolution Stereo Satellite Imagery (고해상도 스테레오 위성영상의 3차원 정확도 평가 및 향상)

  • Jeong, In-Jun;Lee, Chang-Kyung;Yun, Kong-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.617-625
    • /
    • 2014
  • The Rational Function Model has been used as a replacement sensor model in most commercial photogrammetric systems due to its capability of maintaining the accuracy of the physical sensor models. Although satellite images with rational polynomial coefficients have been used to determine three-dimensional position, it has limitations in the accuracy for large scale topographic mapping. In this study, high resolution stereo satellite images, QuickBird-2, were used to investigate how much the three-dimensional position accuracy was affected by the No. of ground control points, polynomial order, and distribution of GCPs. As the results, we can confirm that these experiments satisfy the accuracy requirements for horizontal and height position of 1:25,000 map scale.

A Fast Digital Elevation Model Extraction Algorithm Using Gradient Correlation (Gradient Correlation을 이용한 고속 수치지형표고 모델 추출 방법)

  • Chul Soo Ye;Byung Min Jeon;Kwae Hi Lee
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.250-261
    • /
    • 1998
  • The purpose of this paper is to extract fast DEM (Digital Elevation Model) using satellite images. DEM extraction consists of three parts. First part is the modeling of satellite position and attitude, second part is the matching of two images to find corresponding points of them and third part is to calculate the elevation of each point by using the results of the first and second part. The position and attitude modeling of satellite is processed by using GCPs. A area based matching method is used to find corresponding points between the stereo satellite images. The elevation of each point is calculated using the exterior orientation parameters obtained from modeling and conjugate points from matching. In the DEM generation system, matching procedure holds most of a processing time, therefore to reduce the time for matching, a new fast matching algorithm using gradient correlation and fast similarity measure calculation method is proposed. In this paper, the SPOT satellite images, level 1A 6000$\times$6000 panchromatic images are used to extract DEM. The experiment result shows the possibility of fast DEM extraction with the satellite images.

Accuracy Investigation of RPC-based Block Adjustment Using High Resolution Satellite Images GeoEye-1 and WorldView-2 (고해상도 위성영상 GeoEye-1과 WorldView-2의 RPC 블록조정모델 정확도 분석)

  • Choi, Sun-Yong;Kang, Jun-Mook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.2
    • /
    • pp.107-116
    • /
    • 2012
  • We investigated the accuracy in three dimensional geo-positioning derived by four high resolution satellite images acquired by two different sensors using the vendor-provided rational polynomial coefficients(RPC) based block adjustment in this research. We used two in-track stereo pairs of GeoEye-1 and WorldView-2 satellite and DGPS surveying data. In this experiment, we analyzed accuracies of RPC block adjustment models of two kinds of homogeneous stereo pairs, four kinds of heterogeneous stereo pairs, three 3 triplet image pairs, and one quadruplet image pair separately. The result shows that the accuracies of the models are nearly same. The accuracy without any GCPs reaches about CEP(90) 2.3m and LEP(90) 2.5m and the accuracy with single GCP is about CEP(90) 0.3m and LEP(90) 0.5m.

A Study on the Ceneration of Simulated High-Resolution Satellite Images (고해상도 모의위성영상 제작에 관한 연구)

  • 윤영보;조우석;박종현;이종훈
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.6
    • /
    • pp.327-336
    • /
    • 2002
  • Ever since high resolution satellites were launched, high-resolution satellite images have been utilized in many areas. This paper proposed methods of generating simulated satellite image using DEM(Digital Elevation Model) and digital image such as aerial photograph. There are two methods proposed in the paper: one is Direct-Indirect method and the other Indirect-Indirect, method. It is assumed that satellite attitude is not changing and perspective center is moving in the direction of flight while image is captured. The proposed methods were implemented with aerial photograph, DEM data, arbitrary orbit parameters and attitude parameters of high resolution satellite image under generation. Furthermore, for the stereo viewing, different orientation parameters and perspective center were tested for generating simulated satellite image. In addition, the quality and accuracy of the simulated satellite image generated by the proposed methods were analyzed.

A Study on Large Scale Digital Mapping Using High Resolution Satellite Stereo Images (고해상도 위성영상을 이용한 대축척 수치지도 제작에 관한 연구)

  • Sung Chun Kyoung;Yun Hong Sic;Cho Jae Myoung;Cho Jung Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.3
    • /
    • pp.277-284
    • /
    • 2004
  • The subject of this study is to apply experimentally In resolution stereo imagery of IKONOS to producing 1:50,000 scale maps for Munsan area in Paju, being near the Military Demarcation Line, is inaccessible for aerial photography. Ground control points were acquired from GPS surveying to perform geometric corrections on images. Digital maps were produced from IKONOS stereo imagery on the digital photographic workstation. From field investigation, RMS errors of the plane and vertical positions are estimated respectively at $\pm$1.706m and $\pm$1.231m, respectively. These plane and vertical accuracies are within the tolerance limits of those provided in the NGIS Digital Topographic Map Production Rules. Therefore this suggested method is recommended for producing the large scale digital maps of 'No flight' zone near the M.D.L.

3-D Positioning by Adjustment of the Rational Polynomial Coefficients Data of IKONOS Satellite Image (IKONOS 위성영상 RPC 자료의 수정보완에 의한 3차원 위치결정)

  • 이효성;안기원;신석효
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.279-284
    • /
    • 2004
  • This paper presents on adjustment methods of the vendor-provided RPC(Rational Polynomial Coefficient) of GEO-level stereo images for the IKONOS satellite. RPC are adjusted with control points by the first-order polynomial and the block adjustment method in this study. As results, the maximum error of 3D ground coordinates by the adjusted RPC model did not exceed 4m. The block adjustment method is more stability than the first-order polynomial method.

  • PDF

QuickBird - Geometric Correction, Data Fusion, and Automatic DEM Extraction

  • Cheng, Philip;Toutin, Thierry;Zhang, Yun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.216-218
    • /
    • 2003
  • QuickBird satellite is quickly becoming the best choice for high-resolution mapping using satellite images. In this paper, we will describe the followings: (1) how to correct QuickBird data using different geometric correction methods, (2) data fusion using QuickBird panchromatic and multispectral data, and (3) automatic DEM extraction using QuickBird stereo data.

  • PDF

DEM Generation and Accuracy Comparison from Multiple Kompsat-2 Images (다중 Kompsat-2 영상으로부터 생성된 DEM 정확도 분석)

  • Rhee, Soo-Ahm;Jeong, Jae-Hoon;Lee, Tae-Yoon;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.1
    • /
    • pp.51-58
    • /
    • 2011
  • Accurate DEM(Digital Elevation Model) generation using satellite images is an active research topic. This paper focuses on generation of a DEM with multiple Kompsat-2 images. For DEM generation, we applied an orbit-attitude sensor model and a RPM sensor model to stereo and multiple Kompsat-2 images respectively. For matching, we used an object-space based matching method. Through the result of this experiment, we could confirm that the sensor model from multiple images is more accurate than the model from stereo images. Also DEM from multiple images gave much better performance than DEM from stereo images.