• 제목/요약/키워드: Stereo Satellite Images

검색결과 137건 처리시간 0.029초

DIRECT EPIPOLAR IMAGE GENERATION FROM IKONOS STEREO IMAGERY BASED ON RPC AND PARALLEL PROJECTION MODEL

  • Oh, Jae-Hong;Kim, Kyung-Ok
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.860-863
    • /
    • 2006
  • Epipolar images have to be generated to stereo display aerial images or satellite images. Pushbroom sensor is used to acquire high resolution satellite images. These satellite images have curvilinear epipolar lines unlike the epipolar lines of frame images, which are straight lines. The aforementioned fact makes it difficult to generate epipolar images for pushbroom satellite images. If we assume a linear transition of the sensor having constant speed and attitude during image acquisition, we can generate epipolar images based on parallel projection model (2D Affine model). Recent high resolution images are provided with RPC values so that we can exploit these values to generate epipolar images without using ground control points and tie point. This paper provides a procedure based on the parallel projection model for generating epipolar images directly from a stereo IKONOS images, and experimental results.

  • PDF

Direct Epipolar Image Generation From IKONOS Stereo Imagery Based On RPC and Parallel Projection Model

  • Oh, Jae-Hong;Shin, Sung-Woong;Kim, Kyung-Ok
    • 대한원격탐사학회지
    • /
    • 제22권5호
    • /
    • pp.451-456
    • /
    • 2006
  • Epipolar images have to be generated to stereo display aerial images or satellite images. Pushbroom sensor is used to acquire high resolution satellite images. These satellite images have curvilinear epipolar lines unlike the epipolar lines of frame images, which are straight lines. The aforementioned fact makes it difficult to generate epipolar images for pushbroom satellite images. If we assume a linear transition of the sensor having constant speed and attitude during image acquisition, we can generate epipolar images based on parallel projection model (20 Affine model). Recent high resolution images are provided with RPC values so that we can exploit these values to generate epipolar images without using ground control points and tie point. This paper provides a procedure based on the parallel projection model for generating epipolar images directly from a stereo IKONOS images, and experimental results.

Stereo matching for large-scale high-resolution satellite images using new tiling technique

  • Hong, An Nguyen;Woo, Dong-Min
    • 전기전자학회논문지
    • /
    • 제17권4호
    • /
    • pp.517-524
    • /
    • 2013
  • Stereo matching has been grabbing the attention of researchers because it plays an important role in computer vision, remote sensing and photogrammetry. Although most methods perform well with small size images, experiments applying them to large-scale data sets under uncontrolled conditions are still lacking. In this paper, we present an empirical study on stereo matching for large-scale high-resolution satellite images. A new method is studied to solve the problem of huge size and memory requirement when dealing with large-scale high resolution satellite images. Integrating the tiling technique with the well-known dynamic programming and coarse-to-fine pyramid scheme as well as using memory wisely, the suggested method can be utilized for huge stereo satellite images. Analyzing 350 points from an image of size of 8192 x 8192, disparity results attain an acceptable accuracy with RMS error of 0.5459. Taking the trade-off between computational aspect and accuracy, our method gives an efficient stereo matching for huge satellite image files.

A Study on Urban Change Detection Using D-DSM from Stereo Satellite Data

  • Jang, Yeong Jae;Oh, Kwan Young;Lee, Kwang Jae;Oh, Jae Hong
    • 한국측량학회지
    • /
    • 제37권5호
    • /
    • pp.389-395
    • /
    • 2019
  • Unlike aerial images covering small region, satellite data show high potential to detect urban scale geospatial changes. The change detection using satellite images can be carried out using single image or stereo images. The single image approach is based on radiometric differences between two images of different times. It has limitations to detect building level changes when the significant occlusion and relief displacement appear in the images. In contrast, stereo satellite data can be used to generate DSM (Digital Surface Model) that contain information of relief-corrected objects. Therefore, they have high potential for the object change detection. Therefore, we carried out a study for the change detection over an urban area using stereo satellite data of two different times. First, the RPC correction was performed for two DSMs generation via stereo image matching. Then, D-DSM (Differential DSM) was generated by differentiating two DSMs. The D-DSM was used for the topographic change detection and the performance was checked by applying different height thresholds to D-DSM.

RPC를 기반으로 한 아리랑 2호 에피폴라 영상제작 (RPC-based epipolar image resampling of Kompsat-2 across-track stereos)

  • 오재홍;이효성
    • 한국측량학회지
    • /
    • 제29권2호
    • /
    • pp.157-164
    • /
    • 2011
  • As high-resolution satellite images have enabled large scale topographic mapping and monitoring on global scale with short revisit time, agile sensor orientation, and large swath width, many countries make effort to secure the satellite image information. In Korea, KOMPSAT-2 (KOrea Multi-Purpose SATellite-2) was launched in July 28 2006 with high specification. These satellites have stereo image acquisition capability for 3D mapping and monitoring. To efficiently handle stereo images such as stereo display and monitoring, the accurate epipolar image generation process is prerequisite. However, the process was highly limited due to complexity in epipolar geometry of pushbroom sensor. Recently, the piecewise approach to generate epipolar images using RPC was developed and tested for in-track IKONOS stereo images. In this paper, the piecewise approach was tested for KOMPSAT-2 across-track stereo images to see how accurately KOMPSAT-2 epipolar images can be generated for 3D geospatial applications. In the experiment, two across-track stereo sets from three KOMPSAT-2 images of different dates were tested using RPC as the sensor model. The test results showed that one-pixel level of y-parallax was achieved for manually measured tie points.

Digital Plotting with KOMPSAT-1 EOC Stereo Images using Digital Photogrammetric Workstation

  • Jeong, Soo;Kim, Youn-Soo;Lee, Ho-Nam
    • 대한원격탐사학회지
    • /
    • 제18권1호
    • /
    • pp.25-33
    • /
    • 2002
  • In 1799, Korea has become a country that holds Earth observation satellite in orbit as they had succeeded in the launch of KOPMSAT-1, the first Korean Earth observation satellite for the practical purpose. For the wide application of the satellite imagery, various application techniques are required, and topographic mapping is essential technique for the application in various fields. Moreover, considering that the main mission of the KOMPSAT-1 is to provide the satellite imagery for the mapping of Korean peninsula, the topographic mapping using KOMPSAT-1 EOC imagery is very significant. In this paper, we showed the possibility of digital plotting using KOMPSAT-1 EOC stereo images to produce topographic map. For the purpose, we implemented experimental stereo plotting using digital photogrammetric workstation and analyzed the procedure. As a result of this paper, we showed that some elements consist in 1:25,000 scale map can be plotted from KOMPSAT-1 Stereo images.

A Study on the Analysis of Geometric Accuracy of Tilting Angle Using KOMPSAT-l EOC Images

  • Seo, Doo-Chun;Lim, Hyo-Suk
    • Korean Journal of Geomatics
    • /
    • 제3권1호
    • /
    • pp.53-57
    • /
    • 2003
  • As the Korea Multi-Purpose Satellite-I (KOMPSAT-1) satellite can roll tilt up to $\pm$45$^{\circ}$, we have analyzed some KOMPSAT-1 EOC images taken at different tilt angles for this study. The required ground coordinates for bundle adjustment and geometric accuracy are obtained from the digital map produced by the National Geography Institution, at a scale of 1:5,000. Followings are the steps taken for the tilting angle of KOMPSAT-1 to be present in the evaluation of geometric accuracy of each different stereo image data: Firstly, as the tilting angle is different in each image, the characteristic of satellite dynamic must be determined by the sensor modeling. Then the best sensor modeling equation should be determined. The result of this research, the difference between the RMSE values of individual stereo images is mainly due to quality of image and ground coordinates instead of tilt angle. The bundle adjustment using three KOMPSAT-1 stereo pairs, first degree of polynomials for modeling the satellite position, were sufficient.

  • PDF

Digital Elevation Model Extraction Using KOMPSAT Images

  • Im, Hyung-Deuk;Ye, Chul-Soo;Lee, Kwae-Hi
    • 대한원격탐사학회지
    • /
    • 제16권4호
    • /
    • pp.347-353
    • /
    • 2000
  • The purpose of this paper is to extract DEM (Digital Elevation Model) using KOMPSAT images. DEM extraction consists of three parts. First part is the modeling of satellite position and attitude, second part is the matching of two images to find corresponding points of them and third part is to calculate the elevation of each point by using the result of the first and second part. The position and attitude modeling of satellite is processed by using GCPs. Area based matching method is used to find the corresponding points between the stereo satellite images. The elevation of each point is calculated using the exterior orientation information obtained from sensor modeling and the disparity from the stereo matching. In experiment, the KOMPSAT images, 2592$\times$2796 panchromatic images are used to extract DEM. The experiment result show the DEM using KOMPSAT images.

Evaluation of Geometric Modeling for KOMPSAT-1 EOC Imagery Using Ephemeris Data

  • Sohn, Hong-Gyoo;Yoo, Hwan-Hee;Kim, Seong-Sam
    • ETRI Journal
    • /
    • 제26권3호
    • /
    • pp.218-228
    • /
    • 2004
  • Using stereo images with ephemeris data from the Korea Multi-Purpose Satellite-1 electro-optical camera (KOMPSAT-1 EOC), we performed geometric modeling for three-dimensional (3-D) positioning and evaluated its accuracy. In the geometric modeling procedures, we used ephemeris data included in the image header file to calculate the orbital parameters, sensor attitudes, and satellite position. An inconsistency between the time information of the ephemeris data and that of the center of the image frame was found, which caused a significant offset in satellite position. This time inconsistency was successfully adjusted. We modeled the actual satellite positions of the left and right images using only two ground control points and then achieved 3-D positioning using the KOMPSAT-1 EOC stereo images. The results show that the positioning accuracy was about 12-17 m root mean square error (RMSE) when 6.6 m resolution EOC stereo images were used along with the ephemeris data and only two ground control points (GCPs). If more accurate ephemeris data are provided in the near future, then a more accurate 3-D positioning will also be realized using only the EOC stereo images with ephemeris data and without the need for any GCPs.

  • PDF

고해상도 위성영상에서의 동종센서 스테레오 모델과 이종센서 스테레오 모델의 비교 (Comparison of Single-Sensor Stereo Model and Dual-Sensor Stereo Model with High-Resolution Satellite Imagery)

  • 정재훈
    • 대한원격탐사학회지
    • /
    • 제31권5호
    • /
    • pp.421-432
    • /
    • 2015
  • 동일 센서 내의 스테레오 취득 원리에 기반하여 얻어진 동종센서 스테레오와 서로 다른 센서에서 얻어진 영상간에 임의로 결합된 이종센서 스테레오는 기하 특성과 스테레오 모델 정확도 측면에서 많은 차이를 보이게 된다. 이 논문에서는 고해상도 위성영상에서의 얻어진 동종센서 스테레오 모델과 이종센서 스테레오 모델을 비교한다. 실험을 위해 동일 지역을 촬영한 SPOT-5 스테레오와 KOMPSAT-2 스테레오 영상을 활용하여 총 2쌍의 동종센서 스테레오와 4쌍의 이종센서 스테레오 영상을 이용하였다. 동종센서 스테레오 모델의 경우 모두 안정적인 스테레오 기하를 형성한 반면, 이종센서 스테레오 모델의 경우 2조합은 비교적 안정적인 기하를 다른 2조합은 매우 불안정한 기하를 형성하였다. 그리고 불안정한 기하를 형성한 이종센서 스테레오의 경우 3차원 위치 정확도가 크게 감소하였다. 안정적인 스테레오 기하를 형성하는 이종센서 스테레오의 경우에도 동종센서 스테레오와는 차이점이 있었다. 전반적으로 수직 정확도 측면에서는 동종센서 스테레오 모델이 더 높은 정확도를 보인 반면, 수평 정확도 측면에서는 이종센서 스테레오 모델이 더 높은 정확도를 보여주었다. 논문에서는 두 가지 스테레오 모델이 가지는 기하 특성과 3차원 모델 정확도의 차이를 잘 드러내며, 고해상도 스테레오 영상 특히 이종위성 스테레오 자료를 효과적으로 활용하는데 있어 고려되어야 할 중요한 분석 결과들을 제시한다.