• Title/Summary/Keyword: Stereo Image Matching

Search Result 413, Processing Time 0.025 seconds

A Hybrid Approach for Automated Building Area Extraction from High-Resolution Satellite Imagery (고해상도 위성영상을 활용한 자동화된 건물 영역 추출 하이브리드 접근법)

  • An, Hyowon;Kim, Changjae;Lee, Hyosung;Kwon, Wonsuk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.545-554
    • /
    • 2019
  • This research aims to provide a building area extraction approach over the areas where data acquisition is impossible through field surveying, aerial photography and lidar scanning. Hence, high-resolution satellite images, which have high accessibility over the earth, are utilized for the automated building extraction in this study. 3D point clouds or DSM (Digital Surface Models), derived from the stereo image matching process, provides low quality of building area extraction due to their high level of noises and holes. In this regards, this research proposes a hybrid building area extraction approach which utilizes 3D point clouds (from image matching), and color and linear information (from imagery). First of all, ground and non-ground points are separated from 3D point clouds; then, the initial building hypothesis is extracted from the non-ground points. Secondly, color based building hypothesis is produced by considering the overlapping between the initial building hypothesis and the color segmentation result. Afterwards, line detection and space partitioning results are utilized to acquire the final building areas. The proposed approach shows 98.44% of correctness, 95.05% of completeness, and 1.05m of positional accuracy. Moreover, we see the possibility that the irregular shapes of building areas can be extracted through the proposed approach.

A Study on the Generation of Digital Elevation Model from SPOT Satellite Data (SPOT 위성데이타를 이용한 수치표고모델 생성에 관한 연구)

  • 안철호;안기원;박병욱
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.9 no.2
    • /
    • pp.93-102
    • /
    • 1991
  • This study aims to develop techniques for generating Digital Elevation Model(DEM) from SPOT Computer Compatible Tape(CCT) data, so as to present an effective way of generation of DEM for large area. As the first phase of extracting ground heights from SPOT stereo digital data, the bundle adjustment technique was used to determine the satellite exterior orientation parameters. Because SPOT data has the characteristics of multiple perspective projection, exterior orientation Parameters were modelled as a function of scan lines. In the second phase, a normalized cross correlation matching technique was applied to search for the conjugate pixels ill stereo pairs. The preliminary study showed that the matching window size of 13$\times$13 was adequate. After image coordinates of the conjugate pixels were determined by the matching technique, the ground coordinates of the corresponding pixels were calculated by the space intersection method. Then DEM was generated by interpolations. In addtion an algorithm for the elimination of abnormal elevation was developed and applied. The algorithm was very effective to improve the accuracy of the generated DEM.

  • PDF

Stereo Disparity Estimation by Analyzing the Type of Matched Regions (정합영역의 유형분석에 의한 스테레오 변이 추정)

  • Kim Sung-Hun;Lee Joong-Jae;Kim Gye-Young;Choi Hyung-Il
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.1
    • /
    • pp.69-83
    • /
    • 2006
  • This paper describes an image disparity estimation method using a segmented-region based stereo matching. Segmented-region based disparity estimation yields a disparity map as the unit of segmented region. However, there is a problem that it estimates disparity imprecisely. The reason is that because it not only have matching errors but also apply an identical way to disparity estimation, which is not considered each type of matched regions. To solve this problem, we proposes a disparity estimation method which is considered the type of matched regions. That is, the proposed method classifies whole matched regions into similar-matched region, dissimilar-matched region, false-matched region and miss-matched region by analyzing the type of matched regions. We then performs proper disparity estimation for each type of matched regions. This method minimizes the error in estimating disparity which is caused by inaccurate matching and also improves the accuracy of disparity of the well-matched regions. For the purpose of performance evaluations, we perform tests on a variety of scenes for synthetic, indoor and outdoor images. As a result of tests, we can obtain a dense disparity map which has the improved accuracy. The remarkable result is that the accuracy of disparity is also improved considerably for complex outdoor images which are barely treatable in the previous methods.

Extracting Topographic Information from SPOT-5 HRG Stereo Images (SPOT-5 HRG 스테레오 영상으로부터 지형정보 추출)

  • Lee, Jin-Duk;Lee, Seong-Sun;Jeong, Tae-Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.4 s.38
    • /
    • pp.61-70
    • /
    • 2006
  • This paper presents photogrammetric processing to generate digital elevation models using SPOT-5 HRG stereo images and deals with the accuracy potential of HRG (High Resolution Geometry) supermode imagery for DEM generation. After bundle adjustment was preformed for sensor modelling, digital surface models were generated through the procedures of Epipolar image resampling and image matching. The DEM extracted from HRG imagery was compared along several test sections with the the refernce DEM which was obtained from the digital topographic maps of a scale of 1 to 5000. The ratio of the zone with DEM errors less than 5m to the whole zone was 53.8%, and about 2.5m RMSE was showed when assuming that the zones larger than 5m were affected by clouds, water bodies and buildings and excluding those zones from accuracy evaluation. In addition, the three-dimensional bird's eye view model and 3D building model were producted based on the DSM which was extracted from SPOT-5 HRG data.

  • PDF

Real-time Disparity Acquisition Algorithm from Stereoscopic Image and its Hardware Implementation (스테레오 영상으로부터의 실시간 변이정보 획득 알고리듬 및 하드웨어 구현)

  • Shin, Wan-Soo;Choi, Hyun-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11C
    • /
    • pp.1029-1039
    • /
    • 2009
  • In this paper, the existing disparity aquisition algorithms were analyzed, on the bases of which a disparity generation technique that is superior in accuracy to the generation time was proposed. Basically it uses a pixel-by-pixel motion estimation technique. It has a merit of possibility of a high-speed operation. But the motion estimation technique has a disadvantage of lower accuracy because it depends on the similarity of the matching window regardless of the distribution characteristics of the texture in an image. Therefore, an enhanced technique to increase the accuracy of the disparity is required. This paper introduced a variable-sized window matching technique for this requirement. By the proposed technique, high accuracies could be obtained at the homogeneous regions and the object edges. A hardware to generate disparity image was designed, which was optimized to the processing speed so that a high throughput is possible. The hardware was designed by Verilog-HDL and synthesized using Hynix $0.35{\mu}m$ CMOS cell library. The designed hardware was operated stably at 120MHz using Cadence NC-VerilogTM and could process 15 frames per second at this clock frequency.

Automatic Measuring of GCP's Image Coordinates using Control Point Patch and Auxiliary Points Matching (기준점 패치 및 보조점 정합에 의한 지상기준점의 영상좌표 자동관측)

  • Kang, Myung-Ho;Bang, Soo-Nam;Lee, Yong-Woong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.2 s.25
    • /
    • pp.29-37
    • /
    • 2003
  • An approach is described for automatic measuring of GCP's image coordinates from SPOT imagery and focused on the fulfillment an automatic orientation of satellite images. For the orientation of a stereopair of digital images, firstly, GCP(Ground Control Point) should be selected and then the work for measuring of image coordinates correspond to GCPs is required. In this study, we propose the method for extracting the GCP's image coordinates automatically using an image patch for control points and auxiliary points matching. For the evaluation of measurement accuracy, a comparison between points those are extracted manually and automatically by a proposed method have made. Finally, we shows the feasibility of automatic image coordinates measurment by applying in stereo modeling for SPOT images.

  • PDF

A Fast Algorithm of the Belief Propagation Stereo Method (신뢰전파 스테레오 기법의 고속 알고리즘)

  • Choi, Young-Seok;Kang, Hyun-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.5
    • /
    • pp.1-8
    • /
    • 2008
  • The belief propagation method that has been studied recently yields good performance in disparity extraction. The method in which a target function is modeled as an energy function based on Markov random field(MRF), solves the stereo matching problem by finding the disparity to minimize the energy function. MRF models provide robust and unified framework for vision problem such as stereo and image restoration. the belief propagation method produces quite correct results, but it has difficulty in real time implementation because of higher computational complexity than other stereo methods. To relieve this problem, in this paper, we propose a fast algorithm of the belief propagation method. Energy function consists of a data term and a smoothness tern. The data term usually corresponds to the difference in brightness between correspondences, and smoothness term indicates the continuity of adjacent pixels. Smoothness information is created from messages, which are assigned using four different message arrays for the pixel positions adjacent in four directions. The processing time for four message arrays dominates 80 percent of the whole program execution time. In the proposed method, we propose an algorithm that dramatically reduces the processing time require in message calculation, since the message.; are not produced in four arrays but in a single array. Tn the last step of disparity extraction process, the messages are called in the single integrated array and this algorithm requires 1/4 computational complexity of the conventional method. Our method is evaluated by comparing the disparity error rates of our method and the conventional method. Experimental results show that the proposed method remarkably reduces the execution time while it rarely increases disparity error.

Efficient Depth Map Generation for Various Stereo Camera Arrangements (다양한 스테레오 카메라 배열을 위한 효율적인 깊이 지도 생성 방법)

  • Jang, Woo-Seok;Lee, Cheon;Ho, Yo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6A
    • /
    • pp.458-463
    • /
    • 2012
  • In this paper, we propose a direct depth map acquisition method for the convergence camera array as well as the parallel camera array. The conventional methods perform image rectification to reduce complexity and improve accuarcy. However, image rectification may lead to unwanted consequences for the convergence camera array. Thus, the proposed method excludes image rectification and directly extracts depth values using the epipolar constraint. In order to acquire a more accurate depth map, occlusion detection and handling processes are added. Reasonable depth values are assigned to the obtained occlusion region by the distance and color differences from neighboring pixels. Experimental results show that the proposed method has fewer limitations than the conventional methods and generates more accurate depth maps stably.

Joint Reasoning of Real-time Visual Risk Zone Identification and Numeric Checking for Construction Safety Management

  • Ali, Ahmed Khairadeen;Khan, Numan;Lee, Do Yeop;Park, Chansik
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.313-322
    • /
    • 2020
  • The recognition of the risk hazards is a vital step to effectively prevent accidents on a construction site. The advanced development in computer vision systems and the availability of the large visual database related to construction site made it possible to take quick action in the event of human error and disaster situations that may occur during management supervision. Therefore, it is necessary to analyze the risk factors that need to be managed at the construction site and review appropriate and effective technical methods for each risk factor. This research focuses on analyzing Occupational Safety and Health Agency (OSHA) related to risk zone identification rules that can be adopted by the image recognition technology and classify their risk factors depending on the effective technical method. Therefore, this research developed a pattern-oriented classification of OSHA rules that can employ a large scale of safety hazard recognition. This research uses joint reasoning of risk zone Identification and numeric input by utilizing a stereo camera integrated with an image detection algorithm such as (YOLOv3) and Pyramid Stereo Matching Network (PSMNet). The research result identifies risk zones and raises alarm if a target object enters this zone. It also determines numerical information of a target, which recognizes the length, spacing, and angle of the target. Applying image detection joint logic algorithms might leverage the speed and accuracy of hazard detection due to merging more than one factor to prevent accidents in the job site.

  • PDF

Visual Quality Enhancement of Three-Dimensional Integral Imaging Reconstruction for Partially Occluded Objects Using Exemplar-Based Image Restoration

  • Zhang, Miao;Zhong, Zhaolong;Piao, Yongri
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.1
    • /
    • pp.57-63
    • /
    • 2016
  • In generally, the resolution of reconstructed three-dimensional images can be seriously degraded by undesired occlusions in the integral imaging system, because the undesired information of the occlusion overlap the three-dimensional images to be reconstructed. To solve the problem of the undesired occlusion, we present an exemplar-based image restoration method in integral imaging system. In the proposed method, a minimum spanning tree-based stereo matching method is used to remove the region of undesired occlusions in each elemental image. After that, the removed occlusion region of each elemental images are re-established by using the exemplar-based image restoration method. For further improve the performance of the image restoration, the structure tensor is used to solve the filling error cause by discontinuous structures. Finally, the resolution enhanced three-dimensional images are reconstructed by using the restored elemental images. The preliminary experiments are presented to demonstrate the feasibility of the proposed method.