• Title/Summary/Keyword: StepGuage

Search Result 3, Processing Time 0.016 seconds

Study on Volumetric Accuracy of a CMM using step guage measurement (스텝게이지를 이용한 3차원 측정기의 입체오차 측정에 관한 연구)

  • 박희재;문준희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.312-318
    • /
    • 1993
  • This paper presents an useful technique for error assessment of CMM with simple gauges such as step gauge. A computer module for measurement path generation is implemented,where the appropriate measurement sequences are generated in terms of DMIS file format for CMMs of CNC mode. After the CNC codes are downloaded into CMMs, the measurement operations are performed, and the error analysis are followed. Positional errors, angular errors are successfully measured with high precision along the 3 axis in relatively short time. The squareness error is also assessed with the step gauge measurement data. The developed system has been practically applied, and showed good performance.

  • PDF

EFFECT OF INCREMENTAL FILLING TECHNIQUE ON THE POLYMERIZATION SHRINKAGE OF COMPOSITE RESIN (적층충전법이 복합레진의 중합수축에 미치는 영향)

  • Kim, Hyo-Suk;Lee, Nan-Young;Lee, Sang-Ho;Oh, You-Hyang
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.3
    • /
    • pp.481-490
    • /
    • 2005
  • The aim of this study was to investigate the relationship between the C-factor and shrinkage strain values of composite resin and examine the strain values in different incremental filling techniques. The strain gauge method was used for measurement of polymerization shrinkge strain. Experiment was divided two step. In a first experiment, we compared with strain value in three different depth (2mm, 3mm, 4mm) and microhardness of each samples after 24hours were measured. In a second experiment, we examined the strain values in five different filling techniques(Group 1: bulk filling, Group 2: oblique incremental filling, Group 3: horizontal incremental filling, Group 4: vertical incremental filling, Group 5: lining of flowable resin and bulk filling) The results of the present study can be summarized as follows: 1. Composite resin in acrylic molds showed the initial expansion at the early phase of polymerization. 2. Contraction stress was not revealed significant difference between depth of 2mm and 3mm(P>0.05). 3. Contraction stress in sample of 4mm was showed the lowest value(P<0.05). 4. Microhardness of specimen was revealed more difference between upper and lower surface in depth of 4mm than 2 and 3mm(P<0.05). 5. Lining of flowable resin and bulk filling (Group 5) was showed the lowest contraction stress, Group 2 and 3 was showed the highest contraction stress(P<0.05). On the basis above results, the stress that result from the polymerization shrinkage, when incremental curing techniques are used, showed that there is no advantage in incremental placement and curing.

  • PDF

EFFECT OF SOFT-START CURING ON THE CONTRACTION STRESS OF COMPOSITE RESIN RESTORATION POLYMERIZED WITH LED AND PLASMA CURING UNIT (LED와 플라즈마 광원의 완속기시 광중합 방식이 복합레진의 수축응력에 미치는 영향)

  • Chung, Yang-Seok;Lee, Nan-Young;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.4
    • /
    • pp.623-631
    • /
    • 2007
  • Effect of Soft-start curing on the contraction stress of composite resin restoration polymerized with LED and plasma curing unit The purpose of this study was to evaluate the influence of soft-start light curing on contraction stress and hardness of composite resin. Composite resin (Filtek $Z-250^{TM}$, 3M ESPE, USA) was cured using the one-step continuous curing method with three difference light sources ; conventional halogen light ($XL3000^{TM}$, 3M ESPE, USA) cure for 40 seconds at $400 mw/cm^2$, LED light (Elipar Freelight $2^{TM}$, 3M-ESPE, USA) cure for 20 seconds at $800\;mW/cm^2$ a and plasma arc light ($Flipo^{TM}$, LOKKI, France) cure for 12 seconds at $1300 mW/cm^2$. For the soft-start curing method ; LED light (Elipar Freelight $2^{TM}$, 3M-ESPE, USA) cure exponential increase with 5 seconds followed by 17 seconds at $800\;mW/cm^2$ and plasma arc light ($Flipo^{TM}$, LOKKI, France) cure 2 seconds light exposure at $650\;mW/cm^2$ followed by 11 seconds at $1300\;mW/cm^2$. The strain guage method was used for determination of polymerization contraction. Measurements were recorded at each 2 second for the total of 800 seconds including the periods of light application. Obtained data were analyzed statically using Repeated measures ANOVA, One way ANOVA, and Tukey test. The results of present study can be summarized as follows: 1. Composite resin restoration showed transient expansion just after irradiation of curing light. Contraction stress was increased rapidly at the early phase of polymerization and reduced slowly as time elapsed (P<0.05). 2. Contraction stress was not revealed significant difference between Halogen curing light groups and LED and Plasma Light curing with soft-start group (P>0.05). 3. LED and Plasma Light curing with soft-start showed lower contraction stress than the one-step continuous light curing (P<0.05).

  • PDF