• 제목/요약/키워드: Step response

검색결과 1,316건 처리시간 0.026초

복합제 초 저상 굴절버스의 충돌 특성 해석 (Crashworthiness Characteristic Analysis of Composite Non-step Bus)

  • 김유석;최정훈;조진래;이상진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.756-761
    • /
    • 2007
  • This papered is concerned with the crashworthiness characteristics analysis of the non-step bus when it is crashed or roll-over analysis. Computer simulations is implemented using LS-Dyna explicit code which can effectively analysis dynamic response with the lapse of time. We construct a FEM model of the non-step bus under development according to the safety rules used in Europe for composite non-step buses. The crash energy and absorption rate are evaluated to understand crashworthiness characteristic of the composite non-step bus. Body deformation is also examined whether the survival space is secured for passengers.

  • PDF

수리형태학적 분석을 통한 계단응답 추출 및 반복적 정칙화 방법을 이용한 점확산함수 추정 및 영상 복원 (Morphology-Based Step Response Extraction and Regularized Iterative Point Spread Function Estimation & Image Restoration)

  • 박영욱;전재환;이진희;강남오;백준기
    • 대한전자공학회논문지SP
    • /
    • 제46권6호
    • /
    • pp.26-35
    • /
    • 2009
  • 본 논문은 수리형태학적 분석을 통한 계단응답 추출 및 반복적 정칙화 방법을 이용한 점확산함수 추정 방법을 제안한다. 제안된 점확산함수 추정 기법은 입력 영상의 윤곽을 추출하기 위하여 캐니 에지 추출법을 사용하고, 윤곽에 대한 수리형태학적 분석을 위해서 Hit-or-Miss 변환을 통해 추정 조건을 만족하는 수평 및 수직 에지를 추출한다. 이렇게 추출된 에지들을 평탄화 및 정규화 시켜서 최적의 계단응답으로 만들고, 반복적 정칙화 방법을 통해 점확산함수를 추정하는 과정을 보인다. 또한 추정된 점확산함수를 사용하여 영상 복원한 결과를 보인다. 제안하는 점확산함수 추정 방법은 기계적 초점 렌즈를 사용하지 않는 디지털 자동초점 시스템에 적용하여 디지털 입력 장치의 부가가치를 높이는데 기여할 수 있다.

바닥진동에 의한 비구속 물체의 거동파악 실험과 수치해석 전산프로그램의 개발 (Experimental and Numerical Investigation of Sliding Response of Unconstrained Objects to Base Excitations)

  • 이상호
    • 한국콘텐츠학회논문지
    • /
    • 제14권3호
    • /
    • pp.463-469
    • /
    • 2014
  • 원자력 발전소의 안전관련 설비들은 운영과정에서 일시적으로 비구속 상태에 있게 되며, 이때 지진이 발생할 경우 이러한 설비들은 미끄러짐에 의한 손상이 발생될 수 있다. 이에 본 연구에서는 바닥 진동으로 인한 비구속 물체의 미끄러짐 거동 파악을 위한 실험과 해석을 수행하였다. 실험에서는 마찰계수를 구하기 위한 정역학적 실험과 동역학적 실험 그리고 해석 결과와 비교하기 위한 진동 테이블 실험을 수행하였으며, 해석 방법으로는 미끄러짐 거동을 표현하는 비선형 미분방정식의 해를 선형축차적분법으로 구하여 이를 이용한 전산프로그램을 작성하였다. 작성된 전산프로그램의 검증을 위하여 바닥의 조화진동과 선형진동에 대한 정해를 구하여 비교하였으며, 진동테이블을 이용한 실험 결과와 비교하였다. 또한 미끄러짐으로 인한 비구속 물체의 충돌 기준을 상대변위 포락도를 이용하여 제시하였다.

이차 이산 시스템의 Peak Overshoot을 최소화하기 위한 영점의 위치 설계 (Design of the Zero Location for Minimizing the Peak Overshoot of Second-Order Discrete Systems)

  • 이재석;정태상
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권11호
    • /
    • pp.483-493
    • /
    • 2002
  • The damping ratio ${\xi}$ of the unit-step response of a second-order discrete system is a function of only the location of the closed-loop poles and is not directly related to the location of the system zero. However, the peak overshoot of the response is the function of both the damping ratio ${\xi}$ and an angle ${\alpha}$, which is the phasor angle of the damped sinusoidal response and is determined by the relative location of the zero with respect to the closed-loop poles. Therefore, if the zero and the open-loop poles are relatively adjusted, through pole-zero cancellation, to maintain the desired (or designed) closed-loop poles, the damping ratio ${\xi}$ will also be maintained, while the angle ${\alpha}$ changes. Accordingly, when the closed-loop system poles are fixed, the peak overshoot is considered as a function of the angle ${\alpha}$ or the system zero location. In this paper the effects of the relative location of the zero on the system performance of a second-order discrete system is studied, and a design method of digital compensator which achieves a minimum peak overshoot while maintaining the desired system mode and the damping ratio of the unit step response is presented.

Development of Probiotic Candies with Optimal Viability by Using Response Surface Methodology and Sequential Quadratic Programming

  • Chen, Kun-Nan;Chen, Ming-Ju;Shiu, Jia-Shian
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권6호
    • /
    • pp.896-902
    • /
    • 2008
  • The objective of this research was to create a new probiotic candy with good flavor and healthy benefits by using the response surface method and a sequential quadratic programming technique. The endpoint was to increase the varieties of dairy products and enhance their market values. In this study, milk was mixed with yogurt cultures (Lactobacillus bulgaricus, Streptococcus thermophilus) and probiotics (L. paracasei, Bifidobacterium longum) and incubated at $37^{\circ}C$ for 20 h. The samples were blended with lyoprotectants (galactose, skim milk powder and sucrose), freeze dried and then mixed with sweeteners (lactose and xylitol) to improve the texture for forming tablets. The processing conditions were optimized in two steps: the first step constructed a surface model using response surface methodology; the second step optimized the model with a sequential quadratic programming procedure. Results indicated that skim milk inoculated with L. delbrueckii subsp. Bulgaricus, S. thermophilus, L. paracasei subsp. paracasei and B. longum and blended with 6.9% of galactose, 7.0% of sucrose and 8.0% of skim milk powder would produce a new probiotic candy with the highest viability of probiotics and good flavor. A relatively higher survival of probiotics can be achieved by placing the probiotic candy product in a glass bottle with deoxidant and desiccant at $4^{\circ}C$. These probiotic counts remained at 106-108 CFU/g after being stored for two months.

Using integrated displacement method to time-history analysis of steel frames with nonlinear flexible connections

  • Hadianfard, M.A.
    • Structural Engineering and Mechanics
    • /
    • 제41권5호
    • /
    • pp.675-689
    • /
    • 2012
  • Most connections of steel structures exhibit flexible behaviour under cyclic loading. The flexible connections can be assumed as nonlinear rotational springs attached to the ends of each beam. The nonlinear behaviour of the connections can be considered by suitable moment-rotation relationship. Time-history analysis by direct integration method can be used as a powerful technique to determine the nonlinear dynamic response of the structure. In conventional numerical integration, the response is evaluated for a series of short time increments. The limitations on the size of time intervals can be removed by using Chen and Robinson improved time history analysis method, in which the integrated displacements are used as the new variables in integrated equation of motion. The proposed method permits longer time intervals and reduces the computational works. In this paper the nonlinearity behaviour of the structure is summarized on the connections, and the step by step improved time-history analysis is used to calculate the dynamic response of the structure. Several numerical calculations which indicate the applicability and advantages of the proposed methodology are presented. These calculations illustrate the importance of the effect of the nonlinear behaviour of the flexible connections in the calculation of the dynamic response of steel frames.

Analytical and numerical algorithm for exploring dynamic response of non-classically damped hybrid structures

  • Raheem, Shehata E. Abdel
    • Coupled systems mechanics
    • /
    • 제3권2호
    • /
    • pp.171-193
    • /
    • 2014
  • The dynamic characterization is important in making accurate predictions of the seismic response of the hybrid structures dominated by different damping mechanisms. Different damping characteristics arise from the construction of hybrid structure with different materials: steel for the upper part; reinforced concrete for the lower main part and interaction with supporting soil. The process of modeling damping matrices and experimental verification is challenging because damping cannot be determined via static tests as can mass and stiffness. The assumption of classical damping is not appropriate if the system to be analyzed consists of two or more parts with significantly different levels of damping. The dynamic response of structures is critically determined by the damping mechanisms, and its value is very important for the design and analysis of vibrating structures. A numerical algorithm capable of evaluating the equivalent modal damping ratio from structural components is desirable for improving seismic design. Two approaches are considered to explore the dynamic response of hybrid tower of cable-stayed bridges: The first approach makes use of a simplified model of 2 coupled lumped masses to investigate the effects of subsystems different damping, mass ratio, frequency ratio on dynamic characteristics and equivalent modal damping; the second approach employs a detailed numerical step-by step integration procedure.

Nonlinear finite element analysis of ultra-high performance fiber reinforced concrete beams subjected to impact loads

  • Demirtas, Gamze;Caglar, Naci;Sumer, Yusuf
    • Structural Engineering and Mechanics
    • /
    • 제82권1호
    • /
    • pp.81-92
    • /
    • 2022
  • Ultra-high performance fiber reinforced concrete (UHPFRC) is a composite building material with high ductility, fatigue resistance, fracture toughness, durability, and energy absorption capacity. The aim of this study is to develop a nonlinear finite element model that can simulate the response of the UHPFRC beam exposed to impact loads. A nonlinear finite element model was developed in ABAQUS to simulate the real response of UHPFRC beams. The numerical results showed that the model was highly successful to capture the experimental results of selected beams from the literature. A parametric study was carried out to investigate the effects of reinforcement ratio and impact velocity on the response of the UHPFRC beam in terms of midpoint displacement, impact load value, and residual load-carrying capacity. In the parametric study, the nonlinear analysis was performed in two steps for 12 different finite element models. In the first step, dynamic analysis was performed to monitor the response of the UHPFRC beam under impact loads. In the second step, static analysis was conducted to determine the residual load-carrying capacity of the beams. The parametric study has shown that the reinforcement ratio and the impact velocity affect maximum and residual displacement value substantially.