• Title/Summary/Keyword: Step Heating

Search Result 238, Processing Time 0.023 seconds

A Study of Bending Using Long Type Coil by Discrete Method (다분할 해석법에 의한 장형코일의 곡가공 연구)

  • Lee, Young-Hwa;Jang, Chang-Doo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.3
    • /
    • pp.303-308
    • /
    • 2008
  • The induction heating is more efficient for a plate bending because of its easy operation and control of working parameters, compared with the heating by a gas torch. The existing axis symmetric analysis method could neither handle initial curved plates nor be used in the optimization of coil shapes because of its limit of an axis symmetric coil shape. But the proposed method using some discrete part models and analysis processes could overcome these difficulties and show more accurate results in temperatures and deflections of flat or curved plates with initial curvature than those in the existing axis symmetric analysis method. This method is composed of the multi-disciplinary analyses such as an electro magnetic analysis, a heat transfer analysis and a deformation analysis based on inherent strain approach per each step. Traditionally, the coil shape in the induction heating is circular shape and it needs the moving process along heating lines. To overcome this, the 'Long Type Coil' with some linear parallel coils was proposed. It did not need the moving process along heating lines and reduced the heating process time. The results of experiments were compared with those of the simulation.

Design of High Performance 5 Phase Step Motor Drive System with Current Control Loop (전류 제어기를 가지는 고성능 5상 스텝 모터 구동 드라이버 설계)

  • Chun, Kwang-Su;Kim, Hak-Jin;Kwon, Yong-Kwan;Kang, Suk-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.447-453
    • /
    • 2006
  • This paper proposes that 5 phase step motor drive system has high performance utilizing a micro step control with a current controller. Also this paper proposes an analog current controller to minimize size of the 5 phase step motor drive system. It has better advantages of cost and noise and heating than commercial products. As a result, Applying this system to position control robot the validity of suggested analog current controller and driver system is verified.

Aeration Control of Thermophilic Aerobic Digestion Using Fluorescence Monitoring

  • Kim, Young-Kee;Oh, Byung-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.1
    • /
    • pp.93-98
    • /
    • 2009
  • The thermophilic aerobic digestion (TAD) process is recognized as an effective method for rapid waste activated sludge (WAS) degradation and the deactivation of pathogenic microorganisms. Yet, high energy costs due to heating and aeration have limited the commercialization of economical TAD processes. Previous research on autothermal thermophilic aerobic digestion (ATAD) has already reduced the heating cost. However, only a few studies have focused on reducing the aeration cost. Therefore, this study applied a two-step aeration control strategy to a fill-and-draw mode semicontinuous TAD process. The NADH-dependent fluorescence was monitored throughout the TAD experiment, and the aeration rate shifted according to the fluorescence intensity. As a result, the simple two-step aeration control operation achieved a 20.3% reduction in the total aeration, while maintaining an effective and stable operation. It is also expected that more savings can be achieved with a further reduction of the lower aeration rate or multisegmentation of the aeration rate.

Numerical investigation on ballooning and rupture of a Zircaloy tube subjected to high internal pressure and film boiling conditions

  • Van Toan Nguyen;Hyochan Kim;Byoung Jae Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2454-2465
    • /
    • 2023
  • Film boiling may lead to burnout of the heating element. Even though burnout does not occur, the heating element is subject to deformation because it is not sufficiently strong to withstand external loads. In particular, the ballooning and rupture of a tube under film boiling are important phenomena in the field of nuclear reactor safety. If the tube-type cladding of nuclear fuel ruptures owing to high internal pressure and thermal load, radioactive materials inside the cladding are released to the coolant. Therefore, predicting the ballooning and rupture is important. This study presents numerical simulations to predict the ballooning behavior and rupture time of a horizontal tube at high internal pressure under saturated film boiling. To do so, a multi-step coupled simulation of conjugated film boiling heat transfer and ballooning using creep model is adopted. The numerical methods and models are validated against experimental values. Two different nonuniform heat flux distributions and four different internal pressures are considered. The three-step simulation is enough to obtain a convergent result. However, the single-step simulation also successfully predicts the rupture time. This is because the film boiling heat transfer characteristics are slightly affected by the tube geometry related to creep ballooning.

Characteristics of Electric Resistance Dual Spot Welding Process of AZ31 Magnesium Alloy Sheets (AZ31 마그네슘 합금 판재의 전기저항 이중 스폿용접 특성)

  • Sun, Xiao-Guang;Jin, In-Tai
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.1-11
    • /
    • 2022
  • In this study, an electric resistance dual-spot welding process using a copper electrode inserted in a heating electrode is suggested for the spot welding of AZ31 magnesium sheets. This spot-welding process involves two heating methods for welding at the interfacial zone between the magnesium sheets, one of which is the heating method by thermal conduction from the heating electrode heated by the welding current induced to the steel electrode, and the other heating method uses the electric resistance between the contacted surfaces of the two sheets by the welding current induced to the copper electrode. This welding process includes the welding variables, such as the current induced in the heating electrode and the copper electrode, and the outer diameters of the heating electrode. This is because the heat conducted from the heating electrode can be maintained at a higher temperature in the welding zone, which has a slow cooling effect on the nugget of the melted metal after the welding step. The pressure exerted during the pressing of the magnesium sheets by the heating electrode can be increased around the nugget zone at the spot-welding zone. Thus, it not only reduces the warping effect of the elastoplastic deformation of sheets, but also the corona bond can make it less prone to cracking at the welded zone, thereby reducing the number of nuggets expelled out of the corona bond. In conclusion, it was known that an electric resistance dual spot welding process using the copper electrode inserted in the heating electrode can improve the welding properties in the electric resistance spot welding process of AZ31 magnesium sheets.

Finite Element Analysis of Compression Holding Step Considering Solidification for Semi-Solid Forging (반용융 단조에서 응고 현상을 고려한 가압유지 단계의 유한요소해석)

  • 최재찬;박형진;조해용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.597-601
    • /
    • 1997
  • The technology of Semi-Solid Forging(SSF) has been actively developed to fabricate near-net shape products using light and hardly formable materials. Generally, the SSF process is composed of slug heating,forming,compression holding and ejecting step. After forming step in SSF, the slug is comperssed during a certain holding time in order to be completely filled in the die cavity and be accelerated in solidification rate. This paper presents the analysis of temperature,solid fraction and shrinkage at compression holding step for a cylindrical slug,then predicts the solidification time to obtain the final shaped part. Enthalpy-based finite element analysis is performed to solve the heat transfer problem considering phase change in solidification.

  • PDF

Finite Element Analysis of Compression Holding step Considering Solidification for Semi-Solid Forging (반용융 단조에서 응고 현상을 고려한 가압유지 단계의 유한요소해석)

  • Park, J.C.;Park, H.J.;Cho, H.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.10
    • /
    • pp.102-108
    • /
    • 1997
  • The technology of Semi-Solid Forging (SSF) has been actively developed to fabricate near-net- shape products using light and hardly formable materials. Generally, the SSF process is composed of slug heating, forming, compression holding and ejecting step. After forming step in SSF, the slug is compressed during a certain holding time in order to be completely filled in the die cavity and be accelerated in solidification rate. This paper presents the analysis of temperature, solid fraction and shrinkage at compression holding step for a cylindrical slug, then predicts the solidification time to obtain the final shaped part. Enthalpy-based finite element analysis is performed to solve the heat transfer problem considering phase change in solidification.

  • PDF

Microwave Cooking of Rice - The Optimum Condition of Power Level and Heating Time - (Microwave Oven을 이용한 취반에 관한 연구 -출력 및 가열시간의 최적화-)

  • Kim, Young-A;Kim, Hyun-sook
    • Korean journal of food and cookery science
    • /
    • v.14 no.1
    • /
    • pp.44-49
    • /
    • 1998
  • The microwave cooking of rice was studied for the purpose of establishing optimum conditions of power level and heating time. Optimum volume of adding water was 290 ml per 173 g rice. The longer the rice was soaked, the better the cooked rice. However, we chose one hour as soaking time so that we might observe well the effects of power levels. The mode of microwave cooking consisted of 5 steps of power level; step 1: temperature ascendance, step 2: water absorption 1, step 3: water absorption 2, step 4: heat penetration, step 5: gelatinization completion. The quality of cooked rice was evaluated subjectively. As a result of the study, 3 optimum conditions were chosen as follows. 1) (7) 5:00-(1) 5:00-(2) 5:00-(2) 6:00-(7) 4:00, 2) (8) 4:25-(1) 5:00-(2) 5:00-(2) 5:00-(6) 4:00,3) (9) 3:40-(1) 5:00-(2) 5:00-(3) 6:00-(7) 2:00

  • PDF

A Study on the Prediction of Deformations of Plates due to Line Heating Using a Simplified Thermal Elasto-Plastic Analysis Method (간이 열탄소성 해석을 이용한 선상가열에 의한 판의 변형 예측에 관한 연구)

  • Jang, C.D.;Seo, S.I.;Ko, D.E.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.104-112
    • /
    • 1997
  • Line heating process has been used in forming hull surfaces long before and it has depended on skillful workers. As the reduction of production cost is major concern of shipbuilding companies, line heating work must be improved for higher productivity. In this paper, as the first step to automatic hull forming, a method is proposed to predict deformations due to line heating. It includes a simplified thermal elasto-plastic analysis to increase computing efficiency and to do real time visualization of deformed shapes. For the prediction of deformation, a method to estimate heat flux of the torch is also introduced. Predicted deformations for line heated plates show good agreement with experimental results. The proposed method can be used in control and simulation of line heating process with ease.

  • PDF