• Title/Summary/Keyword: Stem angle

Search Result 132, Processing Time 0.031 seconds

An Analysis of Design Factors for Developing Opuntia Humifusa Spines Removal Device

  • Jang, Ik Joo;Ha, Yu Shin
    • Journal of Biosystems Engineering
    • /
    • v.38 no.3
    • /
    • pp.215-221
    • /
    • 2013
  • Purpose: Opuntia Humifusa has been used in the food and beauty industry after removing spines and glochids clearly. This study compared the methods used in removing spines and analyzed the design factors for developing a spine removal device. Method: This study compared the spine removal ratios in accordance with the length of brush, water spray pressure, the number of water spray, and the size of Opuntia Humifusa in a rotating brush device and a water spray device. In addition, this study compared the reversal ratios according to the inclination angle of a conveyor, the drop height of Opuntia Humifusa, and the speed of the conveyor to analyze the reversal factors. Results: The spines were not removed clearly in the rotating brush method, and the glochids were nailed deeply. The spine removal ratio was 96.9% with the water spray pressure of 20 $kgf/cm^2$ and the conveyor speed of 10 cm/s in the water spray method. The number of water spray was correlated with the spine removal ratio, and the average spine removal ratio was 95.6% with three cycles of water spray. The reversal ratio was 97% with the inclination angle of the conveyor $20^{\circ}$, the drop height of 380 mm, and the conveyor speed of 10 cm/s. Conclusions: In order to develop a Opuntia humifusa spine removing device, this study compared the rotating brush and water spray methods. As a result, each spine removal performance of the rotating brush and water spray methods was 96.9% and 95.6%, respectively. Although the performance of the rotating brush method was slightly higher than that of the water spray method, the water spray method was suitable for removing spines from stem because the epidermis of stem was damaged and the glochids were nail deeply in the rotating brush method. Further studies on appropriate arrangement of spray nozzles, maintaining the optimal water spray pressure, the speed and angle control of the feeding conveyor, and devices for inducing the stem to the center will be needed in combining the water spray device and the reversal device.

Biological Evaluation of Bone Marrow-Derived Stem Cells onto Different Wettability by RT-PCR (역전사 중합효소 연쇄반응을 이용한 표면 적심성에 따른 골수유래 줄기세포의 생물학적 평가)

  • 김은정;박종수;김문석;조선행;이종문;이해방;강길선
    • Polymer(Korea)
    • /
    • v.28 no.3
    • /
    • pp.218-224
    • /
    • 2004
  • The adhesion and proliferation of mammalian cells on polymeric biomaterials depend on the surface characteristics such as wettability, chemistry, charge and roughness. In order to recognize the correlation between the adhesion and proliferation of human bone marrow derived stem cells (BMSCs) and surface property, radio frequency generated plasma treatment on low density polyethylene (LDPE) has been carried out. The modified LDPE surfaces were characterized by measuring the static water contact angle. The adhesion and proliferation of cells on LDPE films were characterized by cell counting and reverse transcription-polymerase chain reaction (RT-PCR). The water contact angle of the film surface decreased with plasma treatment time. Proto-oncogenes (c-myc, c-fos) and tumor suppressor gene (p153) showed maximum expression with contact angle of 60 ∼ 70$^{\circ}$ range of LDPE film. By cell counting, we confirmed that the rate of cell proliferation appeared the higher on the film surface of the contact angle of 60∼70$^{\circ}$ We concluded that the surface wettability is an important role for the growth and differentiation of BMSCs.

Evaluation of Porous PLLA Scaffold for Chondrogenic Differentiation of Stem Cells

  • Jung, Hyun-Jung;Park, Kwi-Deok;Ahn, Kwang-Duk;Ahn, Dong-June;Han, Dong-Keun
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.268-268
    • /
    • 2006
  • Due to their multipotency, stem cells can differentiate into a variety of specialized cell types, such as chondrocytes, osteoblasts, myoblasts, and nerve cells. As an alternative to mature tissue cells, stem cells are of importance in tissue engineering and regenerative medicine. Since interactions between scaffold and cells play an important role in the tissue development in vitro, synthetic oligopeptides have been immobilized onto polymeric scaffolds to improve specific cell attachment and even to stimulate cell differentiation. In this study, chondrogenic differentiation of stem cells was evaluated using surface-modified PLLA scaffolds, i.e., either hydrophilic acrylic acid (AA)-grafted PLLA or RGD-immobilized one. Porous PLLA scaffolds were prepared using a gas foaming method, followed by plasma treatment and subsequent grafting of AA to introduce a hydrophilicity (PLLA-PAA). This was further processed to fix RGD peptide to make an RGD-immobilized scaffold (PLLA-PAA-RGD). Stem cells were seeded at $1{\times}10^{6}$ cells per scaffold and the cell-PLLA constructs were cultured for up to 4 weeks in the chondrogenic medium. Using these surface-modified scaffolds, adhesion, proliferation, and chondrogenic differentiation of stem cells were evaluated. The surface of PLLA scaffolds turned hydrophilic (water contact angle, 45 degrees) with both plasma treatment and AA grafting. The hydrophilicity of RGD-immobilized surface was not significantly altered. Cell proliferation rate on the either PLLA-PAA or PLLA-PAA-RGD surface was obviously improved, especially with the RGD-immobilized one as compared to the control PLLA one. Chondrogenic differentiation was clearly identified with Safranin O staining of GAG in the AA- or RGD-grafted PLLA substrates. This study demonstrated that modified polymer surfaces may provide better environment for chondrogenesis of stem cells.

  • PDF

Identification and Functional Analysis of a Major QTL and Related Genes for Tiller Angle in Rice Using QTL Analysis

  • Dan-Dan Zhao;Kyung-Min Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.280-280
    • /
    • 2022
  • Tiller angle, defined as the angle between the main stem and its side tillers, is one of the main target traits selected inbreeding to achieve the ideal plant type and increase rice yield. Therefore, the discovery and identification of tiller angle-related genes can provide architecture and yield. In the present work, using QTL analysis hence a total of 8 quantitative trait loci (QTLs) were detected based on the phenotype data of tiller angle and tiller crown width in two years. Among them, four QTLs (qTA9, qCW9, qTA9-1, qCW9-1) were overlapped at marker interval RM6235-RM24288 on chromosome 9 with a large effect value regarded as stable major QTL. Twenty tiller angle-related genes were selected from the target region and the relative gene expression levels were checked in five compact type lines, five spreading type lines, and their parental lines. Finally, OsSA URq9 which belongs auxin-responsive SMALL AUXIN UP RNA (SAUR) protein family was selected as a target gene. Overall, this work will help broaden our understanding of the genetic control of tiller angle and tiller crown width, and this study provides both a good theoretical basis and a new genetic resource for the breeding of ideal-type rice.

  • PDF

Changes of Postharvest Quality and Microbial Population in Jujube-Shaped Cherry Tomato (Lycopersicon esculentum L.) by Stem Maintenance or Removal (수확 후 꼭지 유지, 제거에 따른 대추형 방울토마토의 품질 및 미생물 변화)

  • Choi, Ji Weon;Lee, Woo Moon;Do, Kyung Ran;Cho, Mi Ae;Kim, Chang Kug;Park, Me Hea;Kim, Ji Gang
    • Food Science and Preservation
    • /
    • v.20 no.1
    • /
    • pp.30-36
    • /
    • 2013
  • Red-ripe 'Betatiny' jujube-shaped cherry tomato fruits via stem maintenance or stem removal were stored at $20^{\circ}C$ for 12 days. Their quality and microbial safety parameters like their respiration rate, weight loss, soluble solids content (SSC), titratable acidity (TA), firmness, hue value, aerobic microflora, coliform, yeast and mold count, and decay were evaluated during their storage. The jujube-shaped cherry tomato fruits whose stems were removed lost less weight than the fruits whose stems were maintained during their 12 days of storage. The stem removal lowered the respiration more significantly than the stem maintenance, and the formation of novel tissues at the stem scar that resulted from the stem removal was observed morphologically. The SSC, TA and hue value of the skin color decreased after eight storage days, but showed no difference between the stem maintenance and removal. The stem had higher microbial counts like aerobic microflora, coliform, and yeast and mold counts. The stem maintenance showed a short shelf-life because molds grew on the attached stem after five storage days. The shelf-life of the jujube-shaped cherry tomato fruits whose stems were removed was about eight days, but that of the fruits whose stems were maintained and that were stored at $20^{\circ}C$ was only about six days.

Optimum design of cantilever retaining walls under seismic loads using a hybrid TLBO algorithm

  • Temur, Rasim
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.237-251
    • /
    • 2021
  • The main purpose of this study is to investigate the performance of the proposed hybrid teaching-learning based optimization algorithm on the optimum design of reinforced concrete (RC) cantilever retaining walls. For this purpose, three different design examples are optimized with 100 independent runs considering continuous and discrete variables. In order to determine the algorithm performance, the optimization results were compared with the outcomes of the nine powerful meta-heuristic algorithms applied to this problem, previously: the big bang-big crunch (BB-BC), the biogeography based optimization (BBO), the flower pollination (FPA), the grey wolf optimization (GWO), the harmony search (HS), the particle swarm optimization (PSO), the teaching-learning based optimization (TLBO), the jaya (JA), and Rao-3 algorithms. Moreover, Rao-1 and Rao-2 algorithms are applied to this design problem for the first time. The objective function is defined as minimizing the total material and labor costs including concrete, steel, and formwork per unit length of the cantilever retaining walls subjected to the requirements of the American Concrete Institute (ACI 318-05). Furthermore, the effects of peak ground acceleration value on minimum total cost is investigated using various stem height, surcharge loads, and backfill slope angle. Finally, the most robust results were obtained by HTLBO with 50 populations. Consequently the optimization results show that, depending on the increase in PGA value, the optimum cost of RC cantilever retaining walls increases smoothly with the stem height but increases rapidly with the surcharge loads and backfill slope angle.

Hydraulic Experiments of Stem Waves due to Multi-Directional Random Waves along a Vertical Caisson (다방향 불규칙파에 의한 직립벽 주위의 연파특성)

  • Yoo, Hyung-Seok;Kim, Kyu-Han;Jung, Eui-Jin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.6
    • /
    • pp.429-436
    • /
    • 2010
  • Hydraulic experiments were conducted to analyze the characteristics of stem waves due to multidirectional random wave incidence with the different incident angles of main wave direction. Both multi-directional and uni-directional random waves were used to generate the stem waves and their results were compared with each other. The experiment shows multi-directional random waves developed along the vertical wall tend to increase as the incident angle increases similar to the uni-directional waves. Moreover, the stem wave widths were almost same as those in uni-directional random wave cases. However, the experiment demonstrate the stem wave heights were significantly smaller in multi-directional random wave cases than in uni-directional random wave cases.

Comparative Anatomy of the Secondary Xylem in the Root and Stem of Some Korean Lauraceae (수종(數種)의 한국산(韓國産) 녹나무과(科) 식물(植物)에 있어서 뿌리와 줄기의 이기목부(二期木部)의 비교해부(比較解剖))

  • Soh, Woong Young;Lim, Dong Ok
    • Journal of Korean Society of Forest Science
    • /
    • v.76 no.4
    • /
    • pp.317-329
    • /
    • 1987
  • A comparative anatomy between the secondary xylem in the root and the stem of some Korean Lauraceae, including 6 genera and 7 species, was carried out in this study. The results are as follows; diameter and length of vessel element and fiber are wider and longer in the root than the stem. The angle of end wall of vessel element is more inclined in the root than the stem. Also more number of bar on the perforation plate of vessel element in root wood is found. From the anatomical characters of root and stem wood in some Lauraceous species, it is suggested that the wood of the root is phylogenetically mote primitive than that of the stem, except the diameter of vessel element.

  • PDF

Comparison of Growth and Freshness Characteristics as Affected by CO2 Treatment during Cultivation on Radish Sprout Vegetable (무 싹채소 탄산 가스 처리에 따른 생육과 수확후 품질 특성 비교)

  • Lee, Jung-Soo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.26 no.2
    • /
    • pp.105-112
    • /
    • 2020
  • As sprout vegetables of interest growing, its maintaining the quality of the technology was needed to solve the problem of increasing growth and maintain quality after harvest. This experiment proved that the quality of radish sprout vegetable was affected by CO2 treatment during cultivation. Thus, the effect of CO2 treatment during cultivation on postharvest quality of radish sprout vegetable was investigated in terms of the quality changes in weight loss, gas partial pressure, SPAD, hue angle external appearance during storage at polypropylene film (thickness 30 ㎛) at 10℃. CO2 treatment used the way to gas with 700 ppm or carbonated water with 700 ppm and 1,400 ppm. The study revealed that growths on CO2 treated plant were more than those of non-treatment on stem length. After harvesting, the CO2 treated plant and control growing little different characteristics on fresh weight, plant length and so on. However, there were no differences between the CO2 treated plant and control on the Fv/Fm and SOD (superoxide dismutase). In gas partial pressure, the O2 consumption and CO2 accumulation of the CO2 treated plant tended to be more than that of non-treated plant. This study also checked that after packaging, the effects of CO2 treatment during cultivation on the quality of radish sprout vegetable was not significant. However, there were tended to CO2 treatments were lower value compared to control on SPAD, hue angle and general appearance. CO2 treatments of radish sprouting vegetable before harvest were improve growth of stem length, but ones were not improving the maintain of quality on radish sprout vegetable during shelf-life period. The results indicated that CO2 treatment only affected stem elongation until radish sprout vegetable its growth.

A Study on the Characteristics of Plant Fiber Materials for Diffusion Tensor Imaging Phantom (확산텐서영상 팬텀 제작을 위한 식물섬유 재료의 특성에 관한 연구)

  • Lee, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.475-480
    • /
    • 2020
  • The purpose of this study was to reconstruct diffusion tensor tractography (DTT) using stem of garlic and asparagus for in vitro phantom of diffusion tensor imaging (DTI), and to compare and evaluate the fractional anisotropy (FA) value and the apparent diffusion coefficient (ADC) value to determine whether it can be used as materials for in vitro phantoms. Among various plant fibers such as stem of garlic, palmae, cotton, asparagus, etc., stem of garlic and asparagus, which are considered to be the most suitable for making phantoms, and whose shape is considered to be the most suitable for making phantoms, were selected and tests were conducted. Holes were made in a plastic bucket at an angle of 0°, 30°, 60°, 90°, and 120°, then tubes were inserted. In the tube, asparagus and stem of garlic were inserted as far in as possible, and the inserted tube was inserted into the center of the heat bathed gelatin to harden. We were able to reproduce DTT images in asparagus and stem of garlic. Fiber tissues of asparagus and stem of garlic did not show complete connectivity, but the reconstructed images of DTT showed good connectivity. The FA values of asparagus in the tubes were 0.198 at 0° (straight), 0.207 at 30°, 0.187 at 60°, 0.231 at 90°, and 0.204 at 120°. In addition, the FA values of stem of garlic in the tubes were 0.235 at 0°, 0.236 at 30°, 0.216 at 60°, 0.218 at 90°, and 0.257 at 120°. The ADC values of asparagus in the tubes were 1.545 at 0°, 1.677 at 30°, 1.629 at 60°, 1.535 at 90°, and 1.725 at 120°. In addition, the ADC values of stem of garlic in the tubes were 1.252 at 0°, 1.396 at 30°, 1.698 at 60°, 1.756 at 90°, and 1.466 at 120°. For the best expressed DTT reconstruction image, it showed the longest connectivity in the straight line as we hypothesized. In addition, when comparing the FA values and ADC values of fiber tissues of stem of garlic and asparagus, FA value was generally higher in stem of garlic and ADC value was slightly higher in asparagus.