• Title/Summary/Keyword: Stellite 6

Search Result 27, Processing Time 0.028 seconds

Characteristics of Microstructure of Hardfacing Layer of Stellite 6 with Mo Addition (몰리브덴을 첨가하여 PTAW법으로 육성된 Stellite 6합금의 미세조직 특성평가)

  • 신종철;김재수;이덕열;양재웅;윤진국;노대호;이종권
    • Journal of Surface Science and Engineering
    • /
    • v.35 no.4
    • /
    • pp.241-248
    • /
    • 2002
  • Hardfacing layers of Stellite 6 alloy with different molybdenum content are deposited on AISI 1045 carbon steel using plasma transferred arc welding (PTAW). The properties of the hardfacing layer are investigated in order to clarify the effect of molybdenum addition to the cobalt-base alloy. With an increase in molybdenum contents, the size of Cr-rich carbides in the interdendritic region is abruptly refined, but volume fraction of the carbide slightly increases. Also, with an increase of Mo, $M_{6}$ C type carbides are formed instead of Cr-rich $M_{7}$ $C_{3}$ type carbided, and this microstructural change enhanced the mechanical properties of Stellite 6 alloy.

The Processing and Characterization of Sol-Gel Derived Ferroelectric PMN Powders and Thin Films (졸-겔법에 의한 강유전성 PMN 분말 및 박막의 제조와 특성)

  • Hwang, Jin-Myeong;Jang, Jun-Yeong;Eun, Hui-Tae
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1138-1145
    • /
    • 1998
  • The sliding wear behavior of Ni-base hardfacing alloy, Deloro 50, was investigated at the contact stresses of 15ksi and 30ksi under the various wear environments. In air at room temperature, Deloro 50 showed lower wear resistance than Stellite 6 even at 15ksi due to the occurrence of severe adhesive wear. This seems to be caused by the lower hardness and work- hardening rate of Deloro 50 than those of Stellite 6. In water at room temperature, Deloro 50 showed as good wear resistance as Stellite 6 at 15ksi. It was considered to be due to that water could effectively prevent metal to metal contact through contacting asperities. However, Deloro 50 showed severe adhesive wear at 30ksi in water at room temperature. It seems to be that the water could not suppress adhesion wear at 30ksi. At $300^{\circ}C$ in air, Deloro 50 exhibited higher wear resistance than Stellite 6 even at 30ksi. It was considered that the oxide glaze layers formed on wear surface during sliding, effectively prevented direct metal-to-metal contacts.

  • PDF

Effect of Wear Environments on the High Stress Sliding Wear Behavior of Ni-base Deloro 50 Alloy (Ni계 Deloro 50합금의 고하중 Sliding 마모거동에 미치는 마모환경의 영향)

  • Choi, Jin-Ho;Choi, Se-Jong;Kim, Jun-Gi;Kim, Yong-Deog;Kim, Hak-Soo;Mun, Ju-Hyun;Baek, Ha-Chung;Lee, Duck-Hyun;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1115-1120
    • /
    • 1998
  • The sliding wear behavior of Ni-base hardfacing alloy, Deloro 50, was investigated at the contact stresses of 15ksi and 30ksi under the various wear environments. In air at room temperature, Deloro 50 showed lower wear resistance than Stellite 6 even at 15ksi due to the occurrence of severe adhesive wear. This seems to be caused by the lower hardness and work- hardening rate of Deloro 50 than those of Stellite 6. In water at room temperature, Deloro 50 showed as good wear resistance as Stellite 6 at 15ksi. It was considered to be due to that water could effectively prevent metal to metal contact through contacting asperities. However, Deloro 50 showed severe adhesive wear at 30ksi in water at room temperature. It seems to be that the water could not suppress adhesion wear at 30ksi. At $300^{\circ}C$ in air, Deloro 50 exhibited higher wear resistance than Stellite 6 even at 30ksi. It was considered that the oxide glaze layers formed on wear surface during sliding, effectively prevented direct metal-to-metal contacts.

  • PDF

Effect of Hot Isostatic Pressing on the Stellite 6 Alloy prepared by Directed Energy Deposition (DED 적층 제조된 Stellite 6 조성합금의 열간등방압성형 후처리 )

  • Joowon Suh;Jae Hyeon Koh;Young-Bum Chun;Young Do Kim;Jinsung Jang;Suk Hoon Kang;Heung Nam Han
    • Journal of Powder Materials
    • /
    • v.31 no.2
    • /
    • pp.152-162
    • /
    • 2024
  • The directed energy deposited (DED) alloys show higher hardness values than the welded alloys due to the finer microstructure following the high cooling rate. However, defects such as microcracks, pores, and the residual stress are remained within the DED alloy. These defects deteriorate the wear behavior so post-processing such as heat treatment and hot isostatic pressing (HIP) are applied to DED alloys to reduce the defects. HIP was chosen in this study because the high pressure and temperature uniformly reduced the defects. The HIP is processed at 1150℃ under 100 MPa for 4 hours. After HIP, microcracks are disappeared and porosity is reduced by 86.9%. Carbides are spherodized due to the interdiffusion of Cr and C between the dendrite and interdendrite region. After HIP, the nanohardness (GPa) of carbides increased from 11.1 to 12, and the Co matrix decreased from 8.8 to 7.9. Vickers hardness (HV) decreased by 18.9 % after HIP. The dislocation density (10-2/m2) decreased from 7.34 to 0.34 and the residual stress (MPa) changed from tensile 79 to a compressive -246 by HIP. This study indicates that HIP is effective in reducing defects, and the HIP DED Stellite 6 exhibits a higher HV than welded Stellite 6.

Estimation of Hardfacing Material and Thickness of STD61 Hot-Working Tool Steels Through Three-Dimensional Heat Transfer and Thermal Stress Analyses (3 차원 열전달/열응력 해석을 통한 STD61 열간 금형강의 하드페이싱 재료 및 두께 예측)

  • Park, Na-Ra;Ahn, Dong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.427-436
    • /
    • 2014
  • The goal of this paper is to estimate proper hardfacing material and thickness of STD61 hot-working tool steel through three-dimensional heat transfer and thermal stress analyses. Stellite6, Stellite21 and 19-9DL superalloys are chosen as alternative hardfacing materials. The influence of hardfacing materials and thicknesses on temperature, thermal stress and thermal strain distributions of the hardfaced part are investigated using the results of the analyses. From the results of the investigation, it has been noted that a hardfacing material with a high conductivity and a thinner hardfaced layer are desired to create an effective hardfacing layer in terms of heat transfer characteristics. In addition, it has been revealed that the deviation of effective stress and principal strain in the vicinity of the joined region are minimized when the Stellite21 hardfaced layer with the thickness of 2 mm is created on the STD61. Based on the above results, a proper hardfacing material and thickness for STD61 tool steel have been estimated.

Wear Behavior of Plasma Transferred Arc Deposited Layers for Ni - and Co - base Alloy (Ni계 및 Co계 합금 PTA 오버레이용접층의 마모거동에 관한 연구)

  • 윤병현;이창희;김형준
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.540-547
    • /
    • 2001
  • This study has evaluated the wear behavior of PTA (Plasma Transferred Arc) Inconel 625 and Stellite 6 overlays on Nimonic 80A substrate. Nimonic 80A alloy was also included for comparison. In order to evaluate the wear performance, three-body abrasive wear test and pin-on-disk dry sliding wear test were performed. Microstructural development during the solidification of deposits is also discussed. Wear test results show that the wear rate of Stellite 6 deposit is lower than that of Inconel 625 deposit and Nimonic 80A. The sliding wear resistance of overlay deposits follows a similar trend to the abrasive wear resistance, but for Nimonic 80A. The main wear mechanisms were abrasive wear for Inconel 625 deposit, adhesive wear and delamination for Stellite 6 deposit in pin-on-disk dry sliding wear test and ploughing in three-body abrasive wear test. Cross sectional examinations of the worn surface of pin specimens after pin-on-disk dry sliding wear test implies that the plastic deformation near worn surface has occurred during the wear testing.

  • PDF

The effect of aging on the Microstructure and Hardness of Stellite 12 alloy overlayer by PTA process (PTA법에 의한 스텔라이트 12합금 육성층의 미세조직 및 경도에 미치는 시효처리의 영향)

  • 정병호;김무길;이성열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.68-75
    • /
    • 2002
  • Stellite 12 alloy-powders were overlaid on 410 stainless steel valve seat by plasma transferred arc(PTA)process. Variation of microstructure and hardness of overlaid deposit with aging time at $750^{\circ}C$ was investigated. The deposit showed hypoeutectic microstructure, which was consisting of primary cobalt dendrite and networked $M_{7}C_{3}$type eutectic carbides. After aging new M_{23}C_{6}$ carbide was formed by the partial decomposition of $M_7C_3$ type eutectic carbides and finely dispersed $M_{23}C_6$ type carbides were also precipitated in the matrix. Hardness of the deposit was increased with increase of aging time at $750^{\circ}C$ and showed maximum value at 35hours. After showing maximum value, it was fallen down again at 70hours because of overaging. The increase of hardness in aging is ascribed to the formation of new stable $M_{23}C_6$ type carbide by the partial decomposition of $M_7C_3$ type eutectic carbides and also precipitation of finely dispersed $M_{23}C_6$ carbides in matrix.

The Study on the Cavitation Erosion Behavior of Hardfacing Alloys for Nuclear Power Plants (원전 밸브용 경면처리 합금의 캐비테이션 에로젼 (cavitation erosion) 거동에 관한 연구)

  • O, Yeong-Min;Kim, Yun-Gap;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.308-316
    • /
    • 2002
  • The cavitation erosion behavior of wear-resistant hardfacing alloys such as Co-base Stellite 6, Fe-base Norem 02 and new Fe-base alloy were investigated up to 50 hours by using a 20kHz vibratory cavitation erosion test equipment. The crack, initiated easily at the interfaces between matrix and hard second phase, was repressed effectively in Stellite 6 because the matrix was hardened by phase transformation. For this reason, Stellite 6 showed an excellent cavitation erosion resistance compared to Norem 02. The phase transformation also occurred in Norem 02, but the increase of volume fraction of the interfaces caused the crack to be initiated frequently, thus resulting in a 1arge material loss. The matrix of NewAlloy was hardened effectively by vlongrightarrow$\alpha$' phase transformation and the volume fraction of the interfaces was very small compared to Norem 02. This caused the propagation of crack to the matrix to be repressed effectively. Therefore, NewAlloy showed a very excellent cavitation erosion resistance. It wasn't considered that the cavitation erosion resistance of NewAlloy was influenced the temperature of the bath filled with a distilled water up to $80^{\circ}C$.