• Title/Summary/Keyword: Stellar

Search Result 939, Processing Time 0.026 seconds

On the origin of escape fractions of ionizing radiation from star-forming galaxies at high redshift

  • Yoo, Taehwa;Kimm, Taysun;Rosdahl, Joakim
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.73.2-73.2
    • /
    • 2019
  • The physical origin of low escape fractions of ionizing radiation derived from Lyman-break galaxies (LBGs) at z ~ 3 - 4 is a puzzle in the theory of reionization. We perform idealized disk galaxy simulations to investigate how galactic properties, such as metallicity and gas mass, affect the escape of Lyman continuum (LyC) photons using radiation-hydrodynamic code RAMSES-RT, with strong stellar feedback. We find that the luminosity-weighted escape fraction from a metal-poor (Z=0.002) galaxy embedded in a halo of mass Mh ~ 1011 M is 〈f3Desc〉 ~ 8%. However, when the gas metallicity is increased to Z=0.02, the escape fraction is significantly reduced to 〈f3Desc〉 ~ 1%, as young stars are enshrouded by their birth clouds for a longer period of time. On the other hand, increasing the gas mass by a factor of 5 leads to 〈f3Desc〉 ~ 4%, as LyC photons are only moderately absorbed by the thicker disk. Our experiments seem to suggest that high metallicity is primarily responsible for the low escape fractions observed from LBGs, supporting the scenario in which the escape fraction has a negative correlation with halo mass. Indeed, our simulated galaxy with the typical metallicity of LBGs (Z=0.006) shows the relative escape fraction of 8%, consistent with recent observations of galaxies with M1500 = -20.

  • PDF

Gamma-Ray and Neutrino Emissions from Starburst Galaxies

  • Ha, Ji-Hoon;Ryu, Dongsu;Kang, Hyesung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.37.1-37.1
    • /
    • 2020
  • Cosmic-ray protons (CRp) are efficiently produced at starburst galaxies (SBGs), where the star formation rate (SFR) rate is high. In this talk, we present estimates of gamma-ray and neutrino emissions from nearby SBGs, M82, NGC253, and Arp220. Inside the starburst nucleus (SBN), CRp are accelerated at supernova remnant (SNR) shocks as well as at stellar wind (SW) termination shocks, and their transport is governed by the advection due to starburst-driven wind and diffusion mediated by turbulence. We here model the momentum distributions of SNR and SW-produced CRp with single or a double power-law forms. We also employ two different diffusion models, where CRp are resonantly scattered off large-scale turbulence in SBN or self-excited waves driven by CR streaming instability. We then calculate gamma-ray/neutrino fluxes. The observed gamma-ray fluxes by Fermi-LAT, Veritas, and H.E.S.S are well reproduced with double power-law distribution for SNR-produced CRp and the CRp diffusion by self-excited turbulence. The estimated neutrino fluxes are <~10-3 of the atmospheric neutrino flux in the energy range of Eneutrino <~100 GeV and <~10-1 of the IceCube point source sensitivity in the energy range of Eneutrino >~60 TeV.

  • PDF

The effects of the scattering opacity and the color temperature on numerically modelling of the first peak of type IIb supernovae

  • Park, Seong Hyun;Yoon, Sung-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.70.1-70.1
    • /
    • 2020
  • A type IIb supernova (SN IIb) is the result of core-collapse of a massive star which lost most of its hydrogen-rich envelope during its evolution. The pre-SN progenitor properties, such as the total radius and the mass of the hydrogen-rich envelope, can widely vary due to the mass-loss history of the progenitors. Optical light curves of SNe IIb are dominated by energy released by the hydrogen recombination and the radioactive decay of 56Ni in the early and late epochs respectively. This may result in distinctive double peaked light curves like the one observed in SN 1993J. The first peak, caused by the hydrogen recombination, can be modelled with numerical simulations providing information on the pre-SN progenitor properties. We compare two radiation-hydrodynamics codes, STELLA and SNEC, that are frequently used in SNe modelling, and investigate the effect of opacity treatment on the temporal evolution of the color temperature of SNe and eventually on the optical light curves. We find that with a proper treatment of the scattering opacity, SNe IIb models exploded from the progenitor models evolved with latest stellar evolution model hardly match the observational data. We also discuss the smaller scale features found in the models during hydrogen recombination phase.

  • PDF

Mass models of the Large Magellanic Cloud: HI gas kinematics

  • Kim, Shinna;Oh, Se-Heon;For, Bi-Qing;Sheen, Yun-Kyeong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.60.3-61
    • /
    • 2020
  • We perform disk-halo decomposition of the Large Magellanic Cloud (LMC) using a novel HI velocity field extraction method, aimed at better deriving its HI kinematics and thus the dark matter density profile. For this, we use two newly developed galaxy kinematic analysis tools, BAYGAUD and 2DBAT which have been used for the kinematic analysis of resolved galaxies from Australian Square Kilometre Array (ASKAP) observations like WALLABY which is an all-sky HI galaxy survey in southern sky. By applying BAYGAUD to the combined HI data cube of the LMC taken with the Australia Telescope Compact Array (ATCA) and Parkes radio telescopes, we decompose all the line-of-sight velocity profiles into an optimal number of Gaussian components based on Bayesian MCMC techniques. From this, we disentangle turbulent non-circular gas motions from the overall rotation of the galaxy. We then derive the rotation curve of the LMC by applying 2DBAT to the separated circular motions. The rotation curve reflecting the total kinematics of the LMC, dark and baryonic matters is then be combined with the mass models of baryons, mainly stellar and gaseous components in order to examine the dark matter distribution. Here, we present the analysis of the extracted HI gas maps, rotation curve, and J, H and K-band surface photometry of the LMC.

  • PDF

Absolute calibration of near-infrared Period-Luminosity-Metallicity relations for RR Lyrae variables using Gaia EDR3

  • Bhardwaj, Anupam;Rejkuba, Marina;Yang, Soung-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.35.1-35.1
    • /
    • 2021
  • RR Lyrae stars are sensitive probe for the precision stellar astrophysics and also for the cosmic distance scale thanks to their well-defined near-infrared Period-Luminosity relations (PLRs). These horizontal branch variables can be used for primary calibration of the first-rung of population II distance ladder providing an evaluation of the ongoing tension between Cepheid-Supernovae based Hubble constant and the Planck results. Therefore, absolute calibration of RR Lyrae PLRs is now crucial to complement or test the tip of the red giant branch based distances, and in turn, population II star based Hubble constant measurements. While the pulsation models of RR Lyrae can reproduce most observables, they predict a significant metallicity effect on their JHKs-band PLRs that is inconsistent with so-far limited observational studies. We remedy this inconsistency of metallicity dependence in RR Lyrae PLRs by combining their near-infrared observations in the globular clusters of different mean-metallicities with the new parallaxes from the Gaia early data release 3 (EDR3). Our empirical results on Period-Luminosity-Metallicity (PLZ)relations are consistent with theoretical predictions but the precision of absolute calibrations is still affected by the parallax uncertainties and the systematic zero-point offset present in the Gaia EDR3.

  • PDF

The strategy to catch more early light curves of supernovae

  • Hwang, Jeeun;Im, Myungshin;Paek, Gregory S.H.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.71.3-72
    • /
    • 2021
  • The Intensive Monitoring Survey of Nearby Galaxies (IMSNG) is a high cadence observation program monitoring nearby galaxies at < 50 Mpc with high probabilities of hosting supernovae (SNe). The current number of main IMSNG targets is 60, but with new wide-field facilities joining IMSNG, there is a possibility of increasing the likelihood of catching the early light curves of SNe among galaxies in the vicinity of the main targets. To test the feasibility of the expansion of the sample galaxies, we examine how much the probability of catching SNe increases by adjusting the field of view of the RASA36 telescope which is one of the IMSNG facilities with a large field of view of 6.25 deg2. We calculate supernova rates (SNRs) of galaxies within the FoV that contains main IMSNG galaxies from the stellar mass and star formation rate of the galaxies. Based on the SNRs of these galaxies, we find the best pointing of the telescope towards the highest SNR region. As a result, we present improved total SNR, with respect to the ordinary pointing on average where the IMSNG main target is placed at the center of FoV. The actual observation should be followed to test the effect of this strategy.

  • PDF

A Search for Exoplanets around Northern Circumpolar Stars. VII. Detection of Planetary Companion Orbiting the Largest Host Star HD 18438

  • Byeong-Cheol Lee;Jae-Rim Koo;Gwanghui Jeong;Myeong-Gu Park;Inwoo Han;Yeon-Ho Choi
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.1
    • /
    • pp.35-40
    • /
    • 2023
  • We have been conducting a exoplanet search survey using Bohyunsan Observatory Echelle Spectrograph (BOES) for the last 18 years. We present the detection of exoplanet candidate in orbit around HD 18438 from high-precision radial velocity (RV) mesurements. The target was already reported in 2018 (Bang et al. 2018). They conclude that the RV variations with a period of 719 days are likely to be caused by the pulsations because the Lomb-Scargle periodogram of HIPPARCOS photometric and Hα EW variations for HD 18438 show peaks with periods close to that of RV variations and there were no correlations between bisectors and RV measurements. However, the data were not sufficient to reach a firm conclusion. We obtained more RV data for four years. The longer time baseline yields a more accurate determination with a revised period of 803 ± 5 days and the planetary origin of RV variations with a minimum planetary companion mass of 21 ± 1 MJup. Our current estimate of the stellar parameters for HD 18438 makes it currently the largest star with a planetary companion.

Efficient simulation method for a gas inflow to the central molecular zone

  • Shin, Jihye;Kim, Sungsoo S.;Baba, Junichi;Saitoh, Takayuki R.;Chun, Kyungwon;Hozumi, Shunsuke
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.59.1-59.1
    • /
    • 2015
  • We present hydrodynamic simulations of gas clouds that inflowing from the disk to a few hundred parsec region of the Milky Way. Realistic Galactic structures are included in our simulations by thousands of multipole expansions that describe 6.4 million stellar particles of a self-consistent Galaxy simulation (Baba, Saitoh & Wada, in prep.). We find that a hybrid multipole expansion model with two different basis sets and a thick disk correction well reproduces the overall structures of the Milky Way. We find that the nuclear ring evolves into 240 pc at T~1500 Myr, regardless of the initial size. For most of simulation runs, gas inflow rate to the nuclear region is equilibrated as ~0.02 Msun/yr, and thus accumulated gas mass and star formation activity is stabilized as $6{\times}10^7Msun$ and ~0.02M/yr, respectively. These stabilized values are in a good agreement with estimations for the CMZ. The nuclear ring is off-centered to the Galactic center by the lopsided central mass distribution of the Galaxy model, and thus an asymmetric mass distribution is arose accordingly. The lopsidedness also leads the nuclear ring to be tilted to the Galactic plane and to precess along the Galaxy rotation. In early evolutionary stage when gas clouds start to inflow and form the nuclear ring, the z-directional oscillations of the gas clouds results in the twisted, infinity-shaped nuclear ring. Since the infinity-shaped feature is transient only for first 100 Myr, the current infinity-shape observed in the CMZ may indicate that the CMZ forms quite recently.

  • PDF

A NEW TYPE 1 AGN POPULATION AND ITS IMPLICATION ON THE AGN UNIFIED MODEL

  • Yi, Sukyoung K.;Oh, Kyuseok;Schawinski, Kevin;Koss, Michael;Trakhtenbrot, Benny
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.43.1-43.1
    • /
    • 2015
  • We have discovered an unexplored population of galaxies featuring weak broad-line regions (BLRs) at z < 0.2 from detailed analysis of galaxy spectra in the Sloan Digital Sky Survey Data Release 7. These objects predominantly show a stellar continuum but also a broad $H{\alpha}$ emission line, indicating the presence of a low-luminosity active galactic nucleus (AGN) oriented so that we are viewing the central engine directly without significant obscuration. These accreting black holes have previously eluded detection due to their weak nature. The new BLR AGNs we found increased the number of known type 1 AGNs by 49%. Some of these new BLR AGNs were detected at the Chandra X-ray Observatory, and their X-ray properties confirm that they are indeed type 1 AGN. Based on our new and more complete catalogue of type 1 AGNs, we derived the type 1 fraction of AGNs as a function of [OIII] ${\lambda}5007$ emission luminosity and explored the possible dilution effect on the obscured AGN due to star-formation. The new type 1 AGN fraction shows much more complex behavior with respect to black hole mass and bolometric luminosity than suggested by the existing receding torus model. The type 1 AGN fraction is sensitive to both of these factors, and there seems to be a sweet spot (ridge) in the diagram of black hole mass and bolometric luminosity. Furthermore, we present a hint that the Eddington ratio plays a role in determining the opening angles. This work is submitted to ApJS.

  • PDF

OH Emission toward Embedded YSOs

  • Yun, Hyeong-Sik;Lee, Jeong-Eun;Lee, Seokho;Evans, Neal J.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.60.1-60.1
    • /
    • 2015
  • High energy photons and mechanical energy produced by the process of star formation result in copious FIR molecular and atomic lines, which are important coolants of the system. Photons thermally or mechanically induced could dissociate water in the dense envelope to change relative abundances among the species of O, OH, and H2O. Here we analyze OH emission lines toward embedded young stellar objects (YSOs) observed as part of the Herschel open time key program, 'Dust, Ice, and Gas In Time (DIGIT)' in order to study the physical conditions of associated gas and the energy budget loaded on the OH line emission. According to our analysis of the Herschel/PACS spectra, OH emission peaks at the central spaxel in most of sources, but several sources show spatially extended emission structures. In the extended emission sources, the distribution of OH emission is correlated with that of [OI] emission and extended along the outflow directions. Considering the diversity of source properties, ratios between detected OH lines are relatively constant among sources. In addition, each OH line has strong correlation with bolometric luminosity. In order to determine the physical conditions of YSOs, we adopt several methods for the analysis of the OH lines: rotational diagram, non-LTE LVG analysis, and a 2-D PDR code. From the simple LVG analysis, we find that the thermal solution with the dense ( > $10^7cm^{-3}$) and warm ( ~ 100 K) OH gas reproduces the ratios of detected OH lines. However, our self-consistent PDR 2-D model, which can deal with the IR-pumping effect from the central protostar as well as the warm dust in situ, cannot fit the observational results, suggesting that an irradiated shock model is necessary for a better interpretation.

  • PDF