• Title/Summary/Keyword: Steering system

Search Result 1,050, Processing Time 0.033 seconds

Development and Evaluation of Automatic Steering System for Parallel Parking (평행주차를 위한 자동 조향 제어시스템 개발 및 성능평가)

  • Lee, Dae Hyun;Kim, Yong Joo;Kim, Tae Hyeong;Chung, Sun Ok;Choi, Chang Hyun
    • Journal of Drive and Control
    • /
    • v.13 no.1
    • /
    • pp.18-26
    • /
    • 2016
  • This research is conducted to develop an automatic steering system for parallel parking, and the performance of the system was evaluated by parallel parking a conventional vehicle. The automatic steering system consisted of MDPS (motor driven power steering) to control steering, ESC (electronic stability control) to acquire wheel speed, ultrasonic sensors to recognize the parking space, and a controller to communicate and handle data. The parallel parking process using the automatic steering control consisted of parking space recognition, parking path generation, and parking path tracking. The path for parallel parking was generated based on a kinematic model of a conventional vehicle, and a PI controller was used to control the steering angle for path tracking. Parallel parking using the automatic steering control was conducted according to vehicle speed conditions. The results show that the errors on the x-axis and y-axis were below 0.54 m and 0.14 m, respectively, and the error on the steering angle was less than $1^{\circ}$. Therefore, it is possible to implement parallel parking using an automatic steering control system for conventional vehicles.

Characteristic Comparison of Brushless Motor Type for EPS System (전동식 조향장치용 영구자석형 브러시리스 모터의 타입별 특성 비교)

  • Lee, Min-Hwan;Kim, Il-Yong;Lee, Choong-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.53-60
    • /
    • 2012
  • As enforced by the regulation on the improving fuel efficiency and increased the demand on green technology, many interests are focused on electric vehicles and hybrid vehicles. Thus the technology development in electrification of vehicle operation system, including steering and braking field, is actively progressive. Especially electric power steering substitutes for hydraulic power steering rapidly in the market, which is more complex and bigger in packaging volume compared with electric power steering system. The core component in electric power steering system is a motor, which is required to be silent and powerful to guarantee required system performance. Brushless synchronous motors are widely used and many variations of the motors are introduced in the market, while the performance of each type is not well defined or studied for electric power steering system. In this paper, recent developments in brushless synchronous motor are reviewed and compared applying finite element analysis in electromagnetic field. As results, each characteristic of different types of brushless synchronous motors is compared and summarized for optimized selection in electric power steering system.

Intelligent Support System for Ship Steering Control System Based on Network

  • Seo, Ki-Yeol;Suh, Sang-Hyun;Park, Gyei-Kark
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.301-306
    • /
    • 2006
  • The important field of research on ship operation is related to the high efficiency of transportation, the convenience of maneuvering ships and the safety of navigation. As a way of practical application for a smart ship based on network system, this paper proposes the intelligent support system for ship steering control system based on TCP/IP and desires to testify the validity of the proposal by applying the fuzzy control model to the steering control system. As the specific study methods, the fuzzy inference was adopted to build the maneuvering models of steersman, and then the network system was implemented using the TCP/IP socket-based programming. Lastly, the miniature model steering control system combined with LIBL (Linguistic Instruction-based Learning) was designed to testify for its effectiveness.

  • PDF

Dynamic Stability of Automated Guideway Transit (AGT) Vehicles (AGT차량시스템의 동적 안정성)

  • 송창민;이우식
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.282-291
    • /
    • 2000
  • In this paper, the dynamics of automated guideway transit vehicles with rubber tires are studied. Two different AGT models are considered: the bogie system and the steering system . It is found that the bogie system is stable at all possible operating speeds, whereas it is not true fur the steering system. To investigate the dynamic stability of steering systems, the critical speeds are investigated and the dynamics of the closed-loop steering control system are numerically simulated.

  • PDF

Intelligent Ship s Steering Gear Control System Using Linguistic Instruction (언어지시에 의한 지능형 조타기 제어 시스템)

  • Park, Gyei-Kark;Seo, Ki-Yeol
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.417-423
    • /
    • 2002
  • In this paper, we propose intelligent steering control system that apply LIBL(Linguistic Instruction Based Learning) method to steering system of ship and take the place of process that linguistic instruction such as officer s steering instruction is achieved via ableman. We embody ableman s suitable steering manufacturing model using fuzzy inference rule by specific method of study, and apply LIBL method to present suitable meaning element and evaluation rule to steering system of ship, embody intelligent steering gear control system that respond more efficiently on officer s linguistic instruction. We presented evaluation rule to constructed steering manufacturing model based on ableman s experience, and propose rudder angle for steering system, compass bearing arrival time, meaning element of stationary state, and correct ableman manufacturing model rule using fuzzy inference. Also, we apply LIBL method to ship control simulator and confirmed the effectiveness.

Intelligent Ship s Steering Gear Control System Using Linguistic Instruction (언어지시에 의한 지능형 조타기 제어 시스템)

  • 박계각;서기열
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.93-97
    • /
    • 2002
  • In this paper, we propose intelligent steering control system that apply LIBL(Linguistic Instruction Based Learning) method to steering system of ship and take the place of process that linguistic instruction such as officer's steering instruction is achieved via ableman. We embody ableman's suitable steering manufacturing model using fuzzy inference rule by specific method of study, and apply LIBL method to present suitable meaning element and evaluation rule to steering system of ship, embody intelligent steering gear control system that respond more efficiently on officer's linguistic instruction. We presented evaluation rule to constructed steering manufacturing model based on ableman's experience, and propose rudder angle for steering system, compass bearing arrival time, meaning element of stationary state, and correct ableman manufacturing model rule using fuzzy inference. Also, we apply LIBL method to ship control simulator and confirmed the effectiveness.

Development of a Lane Departure Avoidance System using Vision Sensor and Active Steering Control (비전 센서 및 능동 조향 제어를 이용한 차선 이탈 방지 시스템 개발)

  • 허건수;박범찬;홍대건
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.222-228
    • /
    • 2003
  • Lane departure avoidance system is one of the key technologies for the future active-safety passenger cars. The lane departure avoidance system is composed of two subsystems; lane sensing algorithm and active-steering controller. In this paper, the road image is obtained by vision sensor and the lane parameters are estimated using image processing and Kalman Filter technique. The active-steering controller is designed to prevent the lane departure. The developed active-steering controller can be realized by steer-by-wire actuator. The lane-sensing algorithm and active-steering controller are implemented into the steering HILS(Hardware-In-the-Loop Simulation) and their performance is evaluated with a human driver in the loop.

A study on Analysis of Steering Feel for Electric Power Steering System Due to Motor Torque Ripple (모터 토크리플에 기인하는 전동식 조향장치 시스템의 조향감 해석에 대한 연구)

  • Kim, Chan-Mook;Han, Jeong-Hun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.785-790
    • /
    • 2011
  • This paper presents the effects of an assisting motor torque ripple on a driver's steering feeling using a simulink. The EPS(Electric Power Steering) System is modeled as a 5 degrees of freedom for simulation. To find out the influence of a torque ripple on a driver's steering feeling, which is the purpose of this study, we observed the assisting torque in various different speeds, when the torque ripple increased by 0%~40%. The torque ripple had a small but definite influence on the assisting torque, and it had a greater influence in low speeds rather than high speeds.

  • PDF

Manual and Automatic Steering System Using Pulley and Electrical Clutch for Manned and Unmanned Electric Vehicle (풀리 및 전자클러치를 이용한 유무인 전기자동차용 수동 및 자동조향장치)

  • Lee, Yong-Jun;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.597-602
    • /
    • 2012
  • In this paper, a manual and automatic steering system for electric vehicles capable of manned and unmanned driving is proposed. The automatic steering systems, EPS, MDPS, used in conventional engine based car includes the problem of handle lock phenomenon while driving of overloading, therefore it has a drawback to apply to manned and unmanned electric vehicles. By using electronic clutch and pulleys, the proposed manual and automatic steering mechanism was designed so that it is possible to convert from manual to automatic steering mode. To experiment the performance of the proposed steering system, we made an experimental setup of an electric vehicle. We confirmed that the proposed manual and automatic steering system was useful for manned and unmanned electric vehicles.

Torque Control Simulation of the Column Type EPS System using MATLAB/Simulink (MATLAB/Simulink를 이용한 컬럼형 전동조향장치(EPS)의 토크제어 시뮬레이션)

  • Pang Du-Yeol;Lee Seong-Cheol;Jang Bong-Chun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.277-278
    • /
    • 2006
  • As a development of technology, electric power steering system which uses an electric motor came to use in recent and it can solve the problems with hydraulic power steering system. In this paper, vehicle model and electric power steering system are combined to fulfill full vehicle model. By simulation effect of motor torque assist through electric power steering revealed effective, and full vehicle model are proved reasonable through comparison with real car experimental datum.

  • PDF