• 제목/요약/키워드: Steering assist torque

검색결과 12건 처리시간 0.017초

측후방 충돌 회피를 위한 조향 보조 토크 및 차등 제동 분배 제어 알고리즘 개발 (Development of a coordinated control algorithm using steering torque overlay and differential braking for rear-side collision avoidance)

  • 이준영;김동욱;이경수;유현재;정혁진;고봉철
    • 자동차안전학회지
    • /
    • 제5권2호
    • /
    • pp.24-31
    • /
    • 2013
  • This paper describes a coordinated control algorithm for rear-side collision avoidance. In order to assist driver actively and increase driver's safety, the proposed coordinated control algorithm is designed to combine lateral control using a steering torque overlay by Motor Driven Power Steering (MDPS) and differential braking by Vehicle Stability Control (VSC). The main objective of a combined control strategy is twofold. The one is to prevent the collision between the subject vehicle and approaching vehicle in the adjacent lanes. The other is to limit actuator's control inputs and vehicle dynamics to safe values for the assurance of the driver's comfort. In order to achieve these goals, the Lyapunov theory and LMI optimization methods has been employed. The proposed coordinated control algorithm for rear-side collision avoidance has been evaluated via simulation using CarSim and MATLAB/Simulink.

비젼센서와 DRPG알고리즘을 이용한 차선 유지 보조 시스템 개발 (Development of a Lane Keeping Assist System using Vision Sensor and DRPG Algorithm)

  • 황준연;허건수;나혁민;정호기;강형진;윤팔주
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.50-57
    • /
    • 2009
  • Lane Keeping Assistant Systems (LKAS) require the cooperative operation between drivers and active steering angle/torque controllers. An LKAS is proposed in this study such that the desired reference path generation (DRPG) system generates the desired path to minimize the trajectory overshoot. Based on the reference path from the DRPG system, an optimal controller is designed to minimize the cost function. A HIL (Hardware In the Loop) simulator is constructed to evaluate the proposed LKAS system. The single camera is mounted on the simulator and acquires the monitor images to detect lane markers. The performance of the proposed system is evaluated by HIL system using the Carsim and the Matlab Simulink.