• Title/Summary/Keyword: Steering Gear

Search Result 105, Processing Time 0.03 seconds

Side Force Modeling of Landing Gear and Ground Directional Controller Design for UAV (무인기용 착륙장치 측력 모델링 및 지상활주 제어기 설계)

  • Cho, Sung-Bong;Ahn, Jong-Min;Hur, Gi-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.12
    • /
    • pp.997-1003
    • /
    • 2014
  • This paper describes modeling process to obtain precise landing gear model which is necessary to design a control law for ground auto-taxi, auto take-off/landing of UAV. In this paper, landing gear side force modeling is studied to complete a landing gear model of UAV. Side force modeling is performed by calculating cornering angle including steering angle. And ground directional controller is designed by using nose wheel steering and rudder steering at the same time to control course angle error. Accuracy of landing gear side force modeling and ground directional controller is proved by comparing of auto-taxi test results with simulation results.

A COLD FORGING OF HELICAL GEAR FOR STEERING PINION

  • Kim M.E.;Kim Y.G.;Choi S.;Na K.H.;Lee Y.S.;Lee J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.59-62
    • /
    • 2003
  • The precision cold forging of helical gear for steering pinion has been studied. Because of the large helix angle, there are many difficult problems to control the material flow and part dimension. The die shape was proposed to improve the flow of workpiece. In order to improve the dimensional accuracy of forged part, a FE analysis was performed. The proposed die shape drives to flow amicably workpiece. The applied load was reduced up to 10 percent, compared to the conventional-shaped-die. The elastic deformation of die has been investigated quantitatively by the 3-dimensional FE analysis. The die-land has been expanded up to $10{\mu}m$ on loading stage, based on the FEM results. Therefore, the elastic deformation amounts should be taken into consideration to improve the dimensional accuracy of forged helical gear.

  • PDF

Power Circulation Characteristics of Hydro-Mechanical transmission System in Steering (정유압 기계식 변속기의 조향시 동력 순환 특성)

  • Kim, J. S.;Kim, W.;Jung, Y. H.;Jung, S. B.;Kim, H. S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.13-22
    • /
    • 1997
  • Power flow characteristics of a hydro-mechanical transmission system(HMT) are investigated for tracked vehicle in steering. A HMT consisting of two hydrostatic pump motors(HST), several planetary gear trains and steer differential gear is considered. In order to obtain the direction and magnitude of the power flow of the HMT, network theory for the general power transmission is used. Network model for the HMT in steering is developed, which consists of shafts, nodes and transmission elements such as clutch, gear, etc. Power flow analysis procedure consists of two stages : (1) traction force analysis in steering, (2) power flow analysis in HMT. Torque and speed of every transmission element of the HMT is determined from the network analysis. Also, efficiency, mechanical and hydraulic power loss including HST, are obtained. In addition, the regenerative power flow resulting from steering can be studied in graphic display. The power flow analysis program(PCSTEER) developed in this work can be used as a useful design tool for the tracked vehicle with HMT.

  • PDF

A Study on Processing of Monolithic Rack Housing for Modular Steering Gear [II] - Processing Characteristics of Monolithic Rack Housing - (Steering Gear 모듈화를 위한 일체형 Rack Housing의 공정에 관한 연구 [II] - 일체형 Rack Housing의 공정특성 -)

  • Kim, Jong-Do;Lee, Chang-Je
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.288-294
    • /
    • 2009
  • The purpose of this study is manufacturing of monolithic housing for modularization of steering gear. Monolithic housing is difficult to weld with only rotation and linear motion. It is for this reason that housing of joining parts have a slope of 76.3 degrees. For this reason, welding trajectory was measured by the cooperative controled robot system, and then allowing for measured results, we developed the dedicated system. The developed system can be welded by using only 3 axises in contrast with robot system using 8 axises in housing welding. In addition, we applied CMT and laser welding device to dedicated system and as a result of experiment, sound bead and excellent roundness could be obtained.

A Study on Processing of Monolithic Rack Housing for Modular Steering Gear[I] - The Weldability of SAE1020 Steel by Different Heat Sources - (Steering Gear 모듈화를 위한 일체형 Rack Housing의 공정에 관한 연구[I] - 열원에 따른 SAE1020강의 용접특성 -)

  • Kim, Jong-Do;Lee, Chang-Je
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.306-314
    • /
    • 2008
  • General metal welding occurs distortion. Also, reducing distortion is required much cost. Therefore, the purpose of this study is optimization of welding conditions to reduce distortion in welding of monolithic rack housing for modular steering gear. Firstly, heat source for welding was chosen arc and laser. Secondly, it investigated optimizing welding conditions in bead welding by arc and laser heat source, and welding conditions in fillet welding was optimized with welding shapes. Finally, it was measured temperature distribution of welds by infrared camera and angle distortion in fillet welding. As a result, laser welding was superior to arc welding on distortion.

RELIABILITY TEST DESIGN Of REMANUFACTURED STEERING GEAR OIL SEAL

  • Gafurov, Alisher;Jung, Do-Hyun;Song, Hyun-Seok
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2011.06a
    • /
    • pp.265-270
    • /
    • 2011
  • This paper describes a reliability/durability test of the remanufactured steering gear units. There used to be government restrictions to remanufacture certain types of automotive components regarding safety of passengers. Nevertheless, scientific approach to sustainability and remanufacturing process provided solid evidence of highly beneficial sides of reusing the products. Failure mode analysis of the steering gear unit is performed and main failure is found out. The unit is remanufactured by fixing the failure and its quality is assessed through designing a new sequence of loading events. Oil leakage is witnessed as a possible failure and its volume is measured. Conclusions based on laboratory condition durability test are given at the end.

  • PDF