• Title/Summary/Keyword: Steelhead trout

Search Result 2, Processing Time 0.02 seconds

Differential Seawater Adaptability in Three Different Sizes of Under-yearling Steelhead Trout

  • Lee, Myeongseok;Lee, Jang-Won
    • Development and Reproduction
    • /
    • v.24 no.3
    • /
    • pp.215-224
    • /
    • 2020
  • Seawater adaptability of steelhead trout increases along with the increase in the size of the fish, independent of parr-smolt transformation. Three 96 h seawater challenge tests were conducted to determine the size at which seawater adaptability of steelhead trout develops. Plasma Na+ and Cl- levels, moisture content, gill Na+/K+ ATPase activity, and mortality during the 96 h after direct transfer to seawater (32 ppt) were determined. Plasma Na+ and Cl- levels in 50 g fish continuously increased during the 96 h after the transfer to seawater (p<0.05), but the levels in 100 and 150 g fish leveled off after 24 h (p<0.05). Both 100 and 150 g size steelhead trout maintained muscle moisture content (%) better than 50 g size fish (p<0.05). Gill Na+/K+ ATPase activity in the 100 g size group increased in a time-dependent manner after transfer to seawater (p<0.05), whereas activity in the 50 and 150 g sizes did not increase (p>0.05), for which a possible explanation was discussed. A mere 2.6% mortality in both the 50 and 150 g size groups was observed. In conclusion, the current results indicate that 50 g size steelhead trout did not show development of a high level of hypoosmoregulatory capacity, whereas fish in the 100 and 150 g size groups showed a high level in our experimental conditions. Therefore, the steelhead trout larger than a 100 g size is recommended for transfer to seawater culture.

Membrane Hyperpolarization Increases cAMP to Induce the Initiation of Sperm Motility in Salmonid Fishes, Rainbow Trout and Masu Salmon

  • Kho, Kang-Hee;Morisawa, Masaaki;Choi, Kap-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.833-840
    • /
    • 2003
  • Sperm motility of salmonid fishes is suppressed by external $K^{+}$ and initiated by decrease of $K^{+}$ concentration surrounding the sperm. It was shown that the decrease in external $K^{+}$ concentration induced not only the initiation of sperm motility, but also hyperpolarization of the plasma membrane and synthesis of cAMP in the sperm of rainbow trout, steelhead trout, and masu salmon. Inhibitors of $K^{+}$ channels, especially voltage-dependent $K^{+}$ channels, inhibited these three reactions, and the inhibitions were abolished by subsequent addition of a $K^{+}$ ionophore, valinomycin, suggesting that $K^{+}$ efflux through the $K^{+}$ channel contributes to rapid changes in the membrane potential of sperm and cAMP synthesis, thereby resulting in the initiation of sperm motility of salmonid fishes.