• Title/Summary/Keyword: Steel-fiber Reinforced Concrete

Search Result 1,078, Processing Time 0.029 seconds

Vibration analysis of steel fiber reinforced self-compacting concrete beam on elastic foundation

  • Ozdemir, Mahmut Tunahan;Kobya, Veysel;Yayli, Mustafa Ozgur;Mardani-Aghabaglou, Ali
    • Computers and Concrete
    • /
    • v.27 no.2
    • /
    • pp.85-97
    • /
    • 2021
  • In this study, the effect of steel fiber utilization, boundary conditions, different beam cross-section, and length parameter are investigated on the free vibration behavior of fiber reinforced self-compacting concrete beam on elastic foundation. In the analysis of the beam model recommended by Euler-Bernoulli, a method utilizing Stokes transformations and Fourier Sine series were used. For this purpose, in addition to the control beam containing no fiber, three SCC beam elements were prepared by utilization of steel fiber as 0.6% by volume. The time-dependent fresh properties and some mechanical properties of self-compacting concrete mixtures were investigated. In the modelled beam, four different beam specimens produced with 0.6% by volume of steel fiber reinforced and pure (containing no fiber) SCC were analyzed depending on different boundary conditions, different beam cross-sections, and lengths. For this aim, the effect of elasticity of the foundation, cross-sectional dimensions, beam length, boundary conditions, and steel fiber on natural frequency and frequency parameters were investigated. As a result, it was observed that there is a noticeable effect of fiber reinforcement on the dynamic behavior of the modelled beam.

A new method for earthquake strengthening of old R/C structures without the use of conventional reinforcement

  • Tsonos, Alexander-Dimitrios G.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.391-403
    • /
    • 2014
  • In this study an innovative method of earthquake-resistant strengthening of reinforced concrete structures is presented for the first time. Strengthening according to this new method consists of the construction of steel fiber high-strength concrete jackets without conventional reinforcement which is usually applied in the construction of conventional reinforced concrete jackets (i.e., longitudinal reinforcement, stirrups, hoops). The proposed in this study innovative steel fiber high-strength or ultra high-strength concrete jackets were proved to be much more effective than the reinforced concrete jackets and the FRP-jackets when used for the earthquake-resistant strengthening of reinforced concrete structural members.

An Experimental Study on the Mechanical Properties of Fiber Reinforced Permeability Concrete (섬유보강 투수 콘크리트의 역학적 특성에 관한 실험적 연구)

  • 이봉춘;조청휘;박승범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.665-670
    • /
    • 2000
  • In this study mechanical properties of various fiber reinforced permeability concrete mixtures are investigated. Several mixes with fiber kinds(steel fiber, polyprophylen fiber, carbon fiber) and different fiber content(steel fiber : 0.3~0.9vol.%, polyprophylen fiber : 0.1~0.5vol.%, carbon fiber : 0.2~0.7vol.%) were studied. Test results are presented in terms of compressive strength, tensile-flexural strength and load-deflection behavior. The effect of fiber reinforcement does not increase the compressive strength of permeability concrete without fiber. Also, the tensile-flexural strength using various fibers are appeared good strength increase as conventional fiber reinforced concrete. Therefore, use of fiber for permeability concrete is necessary to improve of tensile-flexural properties and deformation performance(toughness).

  • PDF

Effect of Fiber Blending on Material Property of Hybrid Fiber Reinforced Concrete (섬유 혼입 비율에 따른 하이브리드 섬유보강 콘크리트의 재료특성)

  • Kim, Hag-Youn;Seo, Ki-Won;Lee, Wok-Jae;Kim, Nam-Ho;Park, Choon-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.345-348
    • /
    • 2004
  • In this study, an effect of fiber blending on material property of hybrid fiber reinforced concrete (HFRC) was evaluated. Also, optimized association and the mixing rate of fiber for HFRC was determined. Test result shows, in the case of mono fiber reinforced concrete, use of steel fiber in concrete caused increment in tensile and bending strength as the blended ratio increases, while use of carbon fiber and glass fiber caused increment in compressive strength. Use of hybrid fiber reinforcement in concrete caused a significant influence on its fracture behavior; consequently, caused increase by mixing rate of steel fiber and contributed by carbon fiber, glass fiber, celluloid fiber in reinforcement effect in order.

  • PDF

Development of Retrofit Method for Beam Using Steel Plate Reinforced by Fiber Sheet (1) (무소음무진동 보보강공법 개발에 관한 연구(1))

  • Kim WooJae;Choi jong moon;Back Sang Tea;Jung SangJin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.781-784
    • /
    • 2004
  • Method of Steel plate reinforced by fiber sheet is advantageous in the secure loading facility. For this method are a light weight and a high strength, the thickness of steel can be reduced Effects of composite system are depreciated when the thickness of steel is thin. This is the result of the difference of ductility ratio with steel plate. Steel plate reinforced by fiber sheets confirms the ability of transformation. This is the result of the property of steel materials Steel plate reinforced by fiber sheet didn't display an enough performance when theadhesives are epoxy rosin. This is the result of the slide of the surface of stee1. The adhesive ability is varied by the number and span of anchor bolts. There wasn't happening the separation between steel and epoxy. Thus the method used in combination with anchor and epoxy is best excellent. This is the result of the upward of accumulation effects Shearing force is in proportion to the number of bolts. But the ability of shearing force per one bolt is reducing. Thickness of steel plate reinforced by fiber sheet must be designed so that steel is endure before concrete is wreck.

  • PDF

An Experimental Study on Structural Behavior of Steel Fiber Reinforced Concrete (강섬유보강 콘크리트의 구조거동 실험 연구)

  • Yang, In-Hwan;Joh, Chang-Bin;Kang, Su-Tae;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.105-106
    • /
    • 2009
  • The flexural performance of high-strength concrete beams reinforced with steel fibers is described. This study aims at determining the structural behavior of steel fiber reinforced concrete beams such as failure mode, capacity in flexure, crack patterns, strains in concrete.

  • PDF

Shear strength of steel fiber reinforced concrete deep beams without stirrups

  • Birincioglu, Mustafa I.;Keskin, Riza S.O.;Arslan, Guray
    • Advances in concrete construction
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Concrete is a brittle material and weak in tension. Traditionally, web reinforcement in the form of vertical stirrups is used in reinforced concrete (RC) beams to take care of principal stresses that may cause failure when they are subjected to shear stresses. In recent decades, the potential of various types of fibers for improving post-cracking behavior of RC beams and replacing stirrups completely or partially have been studied. It has been shown that the use of steel fibers randomly dispersed and oriented in concrete has a significant potential for enhancing mechanical properties of RC beams. However, the studies on deep steel fiber reinforced concrete (SFRC) beams are limited when compared to those focusing on slender beams. An experimental program consisting of three RC and nine SFRC deep beams without stirrups were conducted in this study. Besides, various models developed for predicting the ultimate shear strength and diagonal cracking strength of SFRC deep beams without stirrups were applied to experimental data obtained from the literature and this study.

Stress-strain behavior and toughness of high-performance steel fiber reinforced concrete in compression

  • Ramadoss, P.;Nagamani, K.
    • Computers and Concrete
    • /
    • v.11 no.2
    • /
    • pp.149-167
    • /
    • 2013
  • The complete stress-strain behavior of steel fiber reinforced concrete in compression is needed for the analysis and design of structures. An experimental investigation was carried out to generate the complete stress-strain curve of high-performance steel fiber reinforced concrete (HPSFRC) with a strength range of 52-80 MPa. The variation in concrete strength was achieved by varying the water-to-cementitious materials ratio of 0.40-0.25 and steel fiber content (Vf = 0.5, 1.0 and 1.5% with l/d = 80 and 55) in terms of fiber reinforcing parameter, at 10% silica fume replacement. The effects of these parameters on the shape of stress-strain curves are presented. Based on the test data, a simple model is proposed to generate the complete stress-strain relationship for HPSFRC. The proposed model has been found to give good correlation with the stress-strain curves generated experimentally. Inclusion of fibers into HPC improved the ductility considerably. Equations to quantify the effect of fibers on compressive strength, strain at peak stress and toughness of concrete in terms of fiber reinforcing index are also proposed, which predicted the test data quite accurately. Compressive strength prediction model was validated with the strength data of earlier researchers with an absolute variation of 2.1%.

Comparison of Steel Fiber Reinforced Column Capacity Using Ordinary and High Strength Concrete (콘크리트 강도에 따른 강섬유 보강기둥의 성능비교)

  • 장극관;이현호;문상덕
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.23-28
    • /
    • 2001
  • Since the steel fiber used in concrete to improve shear and ductility capacity, a number of laboratory tests have been studied to define shear strengthening effect according steel fiber contents in concrete. This study investigates shear strengthening effect of steel fiber in RC columns according to compression strength of concrete. From the structural performance test, following conclusions can be made; the maximum enhancement of shear strengthening effect can be achieved at about 1.0 %~l.5 % of steel fiber contents in comparison with shear capacity ratio, and ductility capacity slightly improved as steel fiber contents increased.

  • PDF

Buckling performance of pultruded glass fiber reinforced polymer profiles infilled with waste steel fiber reinforced concrete under axial compression

  • Emrah, Madenci;Sabry, Fayed;Walid, Mansour;Yasin Onuralp, Ozkilic
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.653-663
    • /
    • 2022
  • This study reports the results of a series of tests of pultruded glass fiber reinforced polymer (P-GFRP) box section composite profile columns, geometrically similar with/without concrete core, containing 0-1-2-3% steel fiber, with different lengths. The recycled steel wires were obtained from waste tyres. The effects of steel fiber ratio on the collapse and size effect of concrete filled P-GFRP columns under axial pressure were investigated experimentally and analytically. A total of 36 columns were tested under compression. The presence of pultruded profile and steel wire ratio were selected as the primary variable. The capacity of pultruded profiles with infilled concrete are averagely 9.3 times higher than the capacity of concrete without pultruded profile. The capacity of pultruded profiles with infilled concrete are averagely 34% higher than that of the pultruded profiles without infilled concrete. The effects of steel wire ratio are more pronounced in slender columns which exhibit buckling behavior. Moreover, the proposed analytical approach to calculate the capacity of P-GFRP columns successfully predicted the experimental findings in terms of both pure axial and buckling capacity.