• 제목/요약/키워드: Steel-Fibers

검색결과 576건 처리시간 0.028초

구조물 음향진동 모니터링을 위한 광섬유 센서 설계 (Fiber Optic Sensor Design for the Monitoring of Structural Sound and Vibration)

  • 이종길
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.81-84
    • /
    • 2007
  • In this paper, fiber optic sound and vibration monitoring sensor which is latticed shape structure based on Sagnac interferometer is fabricated and tested in laboratory conditions. To detect external vibrations surface mounted fibers on the latticed steel wire fence with a dimension of 170cm by 180cm is used. To detect external sound frequency the tightened fiber optic itself wire netting fence with a dimension of 50cm by 50cm is used. Experiments for the detection of the excited vibration and sound signals were performed. A small vibrator induced external vibration signal and it is applied to the latticed structure in the range of 100Hz to several kHz. External sound signal applied to the fiber optic sensor net using non-directional sound speaker. The detected optical signals were compared and analyzed to the detected both accelerometer and microphone signals in the time and frequency domain. Based on the experimental results, distributed fiber optic sensor using Sagnac interferometer detected effectively external vibration and sound signal and had a good performance. This system can be expanded to the monitoring of a significant system and to the structural health monitoring system.

  • PDF

자동차용 탄소 연속섬유 복합재 선루프 프레임의 개발에 대한 연구 (Development of Carbon Continuous-fiber Composite Frame for Automotive Sun-roof Assembly)

  • 김진봉;김경덕;김성진;신동완;김덕기
    • 한국자동차공학회논문집
    • /
    • 제25권3호
    • /
    • pp.350-359
    • /
    • 2017
  • This paper presents a new holistic development approach for the carbon continuous-fiber composite frame of an automotive sunroof assembly. The original steel frame has been designed to get higher bending stiffness with its corrugated cross-sectional shape. The new approach uses the prepregs of a fast cure epoxy and PCM manufacturing processing. For higher productivity, the new frames feature a very simple plat cross sectional shape but achieve high bending stiffness through the laminate design. The sandwich structure with a PET foam core was presented. The frames were made of carbon UD laminae covered single carbon fabric on the outer surfaces. The fabrics provide torsional stiffness and also hold the carbon UD fibers floating in the low viscous epoxy resin of prepregs at the curing temperature during processing. The final product yields approximately 18 % savings in weight compared with the original.

Stability condition for the evaluation of damage in three-point bending of a laminated composite

  • Allel, Mokaddem;Mohamed, Alami;Ahmed, Boutaous
    • Steel and Composite Structures
    • /
    • 제15권2호
    • /
    • pp.203-220
    • /
    • 2013
  • The study of the tensile strength of composite materials is far more complex than analysis of the properties of elasticity and plasticity. Indeed, during mechanical loading, micro-cracks in the matrix, the fibers break, debonding of the interfaces are created. The failure process of composites is of great diversity and cannot be described if even we know: the strength criterion of each individual component, the state of stress and strain in the material, the propagation phenomena cracks in the structure and nature of the interface between the matrix and the reinforcement. This information is only partially known and the obtained by the analysis of a stress limit beyond which there is destruction of the material is almost impossible. To partially process the issue, a solution lies in a mesoscopic approach of seeking a law to locate the ultimate strength of the material for a plane stress state. Tests on rectangular plates in bending PEEK/APC2 and T300/914 three were made and this in order to validate our approach, the calculation has been implemented in a nonlinear finite element code (Castem 2000), in order to make comparison with the numerical results. The results show good agreement between numerical simulation and the two materials; however, it would be interesting to consider other phenomena in the criterion.

Vibration analysis of sandwich sectorial plates considering FG wavy CNT-reinforced face sheets

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제28권5호
    • /
    • pp.541-557
    • /
    • 2018
  • This paper presents the influence of carbon nanotubes (CNTs) waviness and aspect ratio on the vibrational behavior of functionally graded nanocomposite sandwich annular sector plates resting on two-parameter elastic foundations. The carbon nanotube-reinforced (CNTR) sandwich plate has smooth variation of CNT fraction along the thickness direction. The distributions of CNTs are considered functionally graded (FG) or uniform along the thickness and their mechanical properties are estimated by an extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. Effects of CNT distribution, volume fraction, aspect ratio and waviness, and also effects of Pasternak's elastic foundation coefficients, sandwich plate thickness, face sheets thickness and plate aspect ratio are investigated on the free vibration of the sandwich plates with wavy CNT-reinforced face sheets. The study is carried out based on three-dimensional theory of elasticity and in contrary to two-dimensional theories, such as classical, the first- and the higher-order shear deformation plate theories, this approach does not neglect transverse normal deformations. The sandwich annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free.

Dynamic tensile behavior of SIFRCCs at high strain rates

  • Kim, Seungwon;Park, Cheolwoo;Kim, Dong Joo
    • Computers and Concrete
    • /
    • 제26권3호
    • /
    • pp.275-283
    • /
    • 2020
  • Reinforced concrete (RC) does not provide sufficient resistance against impacts and blast loads, and the brittle structure of RC fails to protect against fractures due to the lack of shock absorption. Investigations on improving its resistance against explosion and impact have been actively conducted on high-performance fiber-reinforced cementitious composites (HPFRCCs), such as fiber-reinforced concrete and ultra-high-performance concrete. For these HPFRCCs, however, tensile strength and toughness are still significantly lower compared to compressive strength due to their limited fiber volume fraction. Therefore, in this study, the tensile behavior of slurry-infiltrated fiber-reinforced cementitious composites (SIFRCCs), which can accommodate a large number of steel fibers, was analyzed under static and dynamic loading to improve the shortcomings of RC and to enhance its explosion and impact resistance. The fiber volume fractions of SIFRCCs were set to 4%, 5%, and 6%, and three strain rate levels (maximum strain rate: 250 s-1) were applied. As a result, the tensile strength exceeded 15 MPa under static load, and the dynamic tensile strength reached a maximum of 40 MPa. In addition, tensile characteristics, such as tensile strength, deformation capacity, and energy absorption capacity, were improved as the fiber volume fraction and strain rate increased.

폴리프로필렌 및 강섬유 보강 고강도 콘크리트 기둥부재의 내화성능 (Fire Resistance Performance for Fiber Reinforced High Strength Concrete Column Member)

  • 장창일;이상우;최민정;김준모;김흥열;원종필
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.457-460
    • /
    • 2008
  • 본 연구에서는 폴리프로필렌섬유와 강섬유 혼입에 따른 고강도 기둥 콘크리트의 내화특성을 평가하였으며 내화특성 평가를 위하여 ISO-834 곡선을 적용하여 내화실험을 실시하였다. 실험결과 섬유보강재를 혼입하지 않은 기둥 시험체의 경우 폭렬이 심하게 발생하였으며 높은 내부온도를 나타났다. 폴리프로필렌섬유를 혼입한 고강도 콘크리트 기둥 시험체의 경우 폭렬이 발생하지 않았으며 내부온도 결과에 있어서도 섬유보강재를 혼입하지 않은 경우보다 낮게 나타났다. 폴리프로필렌섬유와 강섬유를 혼입한 기둥 공시체의 경우 폭렬이 발생하지 않았으며 가장 낮은 내부온도를 나타내 가장 우수한 내화성능을 나타냈다.

  • PDF

Dynamic Characterization of Sub-Scaled Building-Model Using Novel Optical Fiber Accelerometer System

  • Kim, Dae-Hyun
    • 비파괴검사학회지
    • /
    • 제31권6호
    • /
    • pp.601-608
    • /
    • 2011
  • This paper presents the damage assessment of a building structure by using a novel optical fiber accelerometer system. Especially, a sub-scaled building model is designed and manufactured to check up the feasibility of the optical fiber accelerometer for structural health monitoring. The novel accelerometer exploits the moir$\acute{e}$ fringe optical phenomenon and two pairs of optical fibers to measure the displacement with a high accuracy, and furthermore a pendulum to convert the displacement into acceleration. A prototype of optical fiber accelerometer system has been successfully developed that consists of a sensor head, a control unit and a signal processing unit. The building model is also designed as a 4-story building with a rectangular shape of $200{\times}300$ mm of edges. Each floor is connected to the next ones by 6 steel columns which are threaded rods. Basically, a random vibration test of the building model is done with a shaker and all of acceleration data is successfully measured at the assigned points by the optical fiber accelerometer. The experiments are repeated in the undamaged state and the damaged state. The comparison of dynamic parameters including the natural frequencies and the eigenvectors is successfully carried out. Finally, the optical fiber accelerometer is proven to be prospective to evaluate dynamic characteristics of a building structure for the damage assessment.

Modeling shotcrete mix design using artificial neural network

  • Muhammad, Khan;Mohammad, Noor;Rehman, Fazal
    • Computers and Concrete
    • /
    • 제15권2호
    • /
    • pp.167-181
    • /
    • 2015
  • "Mortar or concrete pneumatically projected at high velocity onto a surface" is called Shotcrete. Models that predict shotcrete design parameters (e.g. compressive strength, slump etc) from any mixing proportions of admixtures could save considerable experimentation time consumed during trial and error based procedures. Artificial Neural Network (ANN) has been widely used for similar purposes; however, such models have been rarely applied on shotcrete design. In this study 19 samples of shotcrete test panels with varying quantities of water, steel fibers and silica fume were used to determine their slump, cost and compressive strength at different ages. A number of 3-layer Back propagation Neural Network (BPNN) models of different network architectures were used to train the network using 15 samples, while 4 samples were randomly chosen to validate the model. The predicted compressive strength from linear regression lacked accuracy with $R^2$ value of 0.36. Whereas, outputs from 3-5-3 ANN architecture gave higher correlations of $R^2$ = 0.99, 0.95 and 0.98 for compressive strength, cost and slump parameters of the training data and corresponding $R^2$ values of 0.99, 0.99 and 0.90 for the validation dataset. Sensitivity analysis of output variables using ANN can unfold the nonlinear cause and effect relationship for otherwise obscure ANN model.

고강도 콘크리트의 섬유 혼입에 따른 크리프 특성 분석에 관한 연구 (An Analytic Study on the Creep Properties for Fibers Mixed of High Strength Concrete)

  • 박희곤;권해원;이보형;배연기;이재삼;정상진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2009년도 추계 학술논문 발표대회
    • /
    • pp.81-85
    • /
    • 2009
  • In the recent years, the high strength concrete has increasingly been used according to extending market of tall buildings. However, Ministry of Land, transport and Maritime Affairs was established by law with an alternative plan after June 2008 because of the weakness of high strength concrete accompanied spalling phenomena in fire. The mix design of concrete has to properly meet standards which are the spalling resistance of concrete and limited temperature of steel reinforcement. The fire proof concrete mixed fiber has widely been used to meet spalling safety on the many construction sites, the most researches about the fire proof concrete mixed fiber had being carried out focused on fire resistance, compressive strength and cast in place of concrete. But the most important thing is column shortening used the fire proof concrete within the vertical members. In this paper, the fire proof concrete filled spalling safety standards was experimented by required material when the column shortening is revised between normal concrete and fire proof concrete mixed fiber and then the results have done a comparative analysis. Also, The paper aimed to indicate a basic data for revision of column shortening of fire proof concrete.

  • PDF

Compression failure and fiber-kinking modeling of laminated composites

  • Ataabadi, A. Kabiri;Ziaei-Rad, S.;Hosseini-Toudeshky, H.
    • Steel and Composite Structures
    • /
    • 제12권1호
    • /
    • pp.53-72
    • /
    • 2012
  • In this study, the physically-based failure models for matrix and fibers in compression and tension loading are introduced. For the 3D stress based fiber kinking model a modification is proposed for calculation of the fiber misalignment angle. All of these models are implemented into the finite element code by using the advantage of damage variable and the numerical results are discussed. To investigate the matrix failure model, purely in-plane transverse compression experiments are carried out on the specimens made by Glass/Epoxy to obtain the fracture surface angle and then a comparison is made with the calculated numerical results. Furthermore, shear failure of $({\pm}45)_s$ model is investigated and the obtained numerical results are discussed and compared with available experimental results. Some experiments are also carried out on the woven laminated composites to investigate the fracture pattern in the matrix failure mode and shown that the presented matrix failure model can be used for the woven composites. Finally, the obtained numerical results for stress based fiber kinking model and improved ones (strain based model) are discussed and compared with each other and with the available results. The results show that these models can predict the kink band angle approximately.