• Title/Summary/Keyword: Steel spiral

Search Result 81, Processing Time 0.026 seconds

Behavior of concrete columns confined with both steel angles and spiral hoops under axial compression

  • Zhou, Chunheng;Chen, Zongping;Shi, Sheldon Q.;Cai, Liping
    • Steel and Composite Structures
    • /
    • v.27 no.6
    • /
    • pp.747-759
    • /
    • 2018
  • This study proposed a new type of concrete column that was confined with both steel angles and spiral hoops, named angle-steel and spiral confined concrete (ASCC) column. A total of 22 ASCC stub columns were tested under axial compression to investigate their behavior. For a comparison, three angle-steel reinforced concrete (ARC) stub columns were also tested. The test results indicated that ASCC column had a superior mechanical performance. The strength, ductility and energy absorption were considerably increased due to the improvement of confinement from spiral hoops. The confinement behavior and failure mechanism of ASCC column were investigated by the analysis of failure mode, load-deformation curve and section-strain distribution. Parametric studies were carried out to examine the influences of different parameters on the axial compression behavior of ASCC columns. A calculation approach was developed to predict the ultimate load carrying capacity of ASCC columns under axial compression. It was validated that the predicted results were in well agreement with the experimental results.

Effect of spiral spacing on axial compressive behavior of square reinforced concrete filled steel tube (RCFST) columns

  • Qiao, Qiyun;Zhang, Wenwen;Mou, Ben;Cao, Wanlin
    • Steel and Composite Structures
    • /
    • v.31 no.6
    • /
    • pp.559-573
    • /
    • 2019
  • Spiral spacing effect on axial compressive behavior of reinforced concrete filled steel tube (RCFST) stub column is experimentally investigated in this paper. A total of twenty specimens including sixteen square RCFST columns and four benchmarked conventional square concrete filled steel tube (CFST) columns are fabricated and tested. Test variables include spiral spacing (spiral ratio) and concrete strength. The failure modes, load versus displacement curves, compressive rigidity, axial compressive strength, and ductility of the specimens are obtained and analyzed. Especially, the effect of spiral spacing on axial compressive strength and ductility is investigated and discussed in detail. Test results show that heavily arranged spirals considerably increase the ultimate compressive strength but lightly arranged spirals have no obvious effect on the ultimate strength. In practical design, the effect of spirals on RCFST column strength should be considered only when spirals are heavily arranged. Spiral spacing has a considerable effect on increasing the post-peak ductility of RCFST columns. Decreasing of the spiral spacing considerably increases the post-peak ductility of the RCFSTs. When the concrete strength increases, ultimate strength increases but the ductility decreases, due to the brittleness of the higher strength concrete. Arranging spirals, even with a rather small amount of spirals, is an economical and easy solution for improving the ductility of RCFST columns with high-strength concrete. Ultimate compressive strengths of the columns are calculated according to the codes EC4 (2004), GB 50936 (2014), AIJ (2008), and ACI 318 (2014). The ultimate strength of RCFST stub columns can be most precisely evaluated using standard GB 50936 (2014) considering the effect of spiral confinement on core concrete.

Load Transfer Test of Spirally Reinforced Anchorage Zone for Banded Tendon Group (나선형 원형철근으로 보강된 집중배치 텐던 정착구역에 대한 하중전달시험)

  • Cho, Ah Sir;Kang, Thomas H.K.
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.1
    • /
    • pp.59-67
    • /
    • 2017
  • In this study, load transfer tests based on KCI-PS101 were conducted to verify the performance of spiral anchorage zone reinforcement for banded post-tensioning (PT) monostrands. With results, the compressive strength of spiral reinforcement was increased by about 20% than that of specimens with two horizontal steel bars and 8% than that of U-shaped bars. Advanced spiral reinforcement for corner increases compressive strength and can resist the spalling forces or fall-out effect at the corner by shear. The ratio of maximum load to amount of steel of the spiral reinforcement is about twice than that of U-shaped reinforcement. With increase of compressive strength capacity and improvement of constructability, the spiral reinforcement is considered to have advantages of promoting the performance of PT anchorage zone compared to conventional methods.

Push-out resistance of concrete-filled spiral-welded mild-steel and stainless-steel tubes

  • Loke, Chi K.;Gunawardena, Yasoja K.R.;Aslani, Farhad;Uy, Brian
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.823-836
    • /
    • 2019
  • Spiral welded tubes (SWTs) are fabricated by helically bending a steel plate and welding the resulting abutting edges. The cost-effectiveness of concrete-filled steel tube (CFST) columns can be enhanced by utilising such SWTs rather than the more conventional longitudinal seam welded tubes. Even though the steel-concrete interface bond strength of such concrete-filled spiral-welded steel tubes (CF-SWSTs) is an important consideration in relation to ensuring composite behaviour of such elements, especially at connections, it has not been investigated in detail to date. CF-SWSTs warrant separate consideration of their bond behaviour to CFSTs of other tube types due to the distinct weld seam geometry and fabrication induced surface imperfection patterns of SWTs. To address this research gap, axial push-out tests on forty CF-SWSTs were carried out where the effects of tube material, outside diameter (D), outside diameter to wall thickness (D/t), length of the steel-concrete interface (L) and concrete strength grade (f'c) were investigated. D, D/t and L/D values in the range 102-305 mm, 51-152.5 and 1.8-5.9 were considered while two nominal concrete grades, 20 MPa and 50 MPa, were used for the tests. The test results showed that the push-out bond strengths of CF-SWSTs of both mild-steel and stainless-steel were either similar to or greater than those of comparable CFSTs of other tube types. The bond strengths obtained experimentally for the tested CF-SWSTs, irrespective of the tube material type, were found to be well predicted by the guidelines contained in AISC-360.

Analysis on Flexural Behavior of Spiral Steel Pipe Considering Residual Stress Developed by Pipe Manufacturing (조관에 의한 잔류 응력을 고려한 스파이럴 강관의 휨 거동 분석)

  • Kim, Kyuwon;Kim, Jeongsoo;Kang, Dongyoon;Kim, Moon Kyum
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.4
    • /
    • pp.65-73
    • /
    • 2019
  • A spiral steel pipe has been more used widely as a structural member as well as transport pipeline because the pipe can be manufactured continuously, consequently more economical than the conventional UOE pipe. As improved pipe manufacture technology makes spiral pipes to have high strength and to have larger diameters, the spiral pipes have been recently used as long distance transport pipeline with a large diameter and strain-based design is thus required to keep structural integrity and cost effectiveness of the spiral pipe. However, design codes of spiral pipe have not been completely established yet, and structural behaviors of a spiral pipe are not clearly understood for strain-based design. In this paper, the effects of residual stresses due to the spiral pipe manufacture process are investigated on the flexural behavior of the spiral pipe. Finite element analyses were conducted to estimate residual stresses due to the manufacturing process for the pipes which have different forming angle, thickness, and strength, respectively. After that, the results were used as initial conditions for flexural analysis of the pipe to numerically investigate its flexural behaviors.

A Study on Seismic Performance of Spiral Prer (나선철근교각의 내진성능에 관한 연구)

  • 배성용;김광수;이형준;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.363-368
    • /
    • 2000
  • The Korean Bridge Design Standard Specifications adopted the seismic design requirements in 1992. However, The current seismic design requirements for bridges are based on the USA seismic codes for sever earthquake. This provides the basic factors that affects the performance of spiral reinforced concrete piers for seismic loading, and The specimen tests are performed based on load-displacement, effective stiffness and displacement ductility, etc. The quasi-static test was adopted in order to investigate seismic performance of the spiral reinforced concrete pier specimens which had different transverse steel amount, spacing and longitudinal steel ratio under different axial load levels. This study is concluded that seismic design for transverse reinforcement content of spiral reinforced concrete column has influenced on axial load and effective stiffness etc.

  • PDF

Experimental Study on Structural Performance of Recycled Coarse Aggregate Concrete Confined by Steel Spirals (나선철근으로 횡구속된 순환골재 콘크리트의 구조적 성능에 관한 실험적 연구)

  • Kim, Sang Woo;Jung, Chang Kyo;Lee, Sun Hee;Kim, Kil Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.103-111
    • /
    • 2011
  • This paper estimated the structural behavior of recycled aggregate concrete confined with spiral reinforcement. The main test parameter was designed to be the type of aggregates and the steel ratio of spirals. A total of 18 specimens were cast and tested in this study. All the specimens had a diameter of 150mm and a height of 300mm. The specimens can be divided into two groups, based on the type of coarse aggregate used. The ratio of spiral reinforcement was varied from 0 % to 1.75%. To measure the axial and lateral deformations of the specimens, a total of six linear variation displacement transducers (LVDTs) were installed at each specimen. Furthermore strain gauges were also attached to the steel spirals to obtain the strain of spiral reinforcements. From the experimental results, the structural performance of recycled aggregate concrete specimens confined by steel spirals was similar to that of natural aggregate concrete specimens regardless of the ratio of spiral reinforcement.

A Study on Steel Pipe Coupler for Splicing Spiral Rebars (나선철근 이음을 위한 강관압착식 커플러에 관한 연구)

  • 오민수;이규세;김수만
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.433-436
    • /
    • 1999
  • The spiral provides the column with the ability to absorb considerable deformation prior to failure. Although this toughness is the principal gain that is achieved by the use of spiral reinforced columns, the its serviceability is limited by the fault of lap splices. The mechanical connection for the spiral bar placement is development in the study. The study contains for the experiment of the mechanical connection.

  • PDF

Evaluation of Structural Stability of Plastic Greenhouses with Steel Spiral Piles on Reclaimed Lands (간척지에서 강재 나선말뚝기초를 적용한 플라스틱 온실의 안전성 평가)

  • Yum, Sung Hyun;Lee, Won Bok
    • Journal of Bio-Environment Control
    • /
    • v.26 no.1
    • /
    • pp.27-34
    • /
    • 2017
  • This study was carried out to estimate structural stabilities in respect of ground footings of plastic greenhouses on reclaimed lands. A 6m-wide multi-span plastic greenhouse with steel spiral piles as well as two 8.2m-wide single-span greenhouses with steel spiral piles and continuous pipe foundation respectively were built up on a reclaimed land with a SPT N-Value of 2 and measured how much the greenhouses were lifted up and subsided. In addition, the uplift capacity of three kinds of spiral piles(${\phi}50$, ${\phi}75$ and ${\phi}100$) was determined on a nearby reclaimed land. The results showed that the greenhouses with spiral piles had a slight vertical displacement like moving up and down but the scales of the rising up and sinking were negligible when compared to that of the greenhouses. The vertical displacement of the multi-span greenhouse ranged from +9.0mm(uplift) to -11.5mm(subsidence). As for the single-span greenhouses with spiral piles and continuous pipe foundation, the measurements showed that it varied from +1.3mm to -7.7mm and from +0.9mm to -11.2mm, respectively. The allowable uplift capacity of spiral piles could all be determined under criteria of ultimate load and accordingly had a value of 0.40kN, 1.0kN and 2.5kN, respectively. It was not entirely certain enough to make a final judgement on structural stabilities in respect of ground footings, it appeared likely however that the greenhouses with steel spiral piles was tentatively observed without any problems on reclaimed lands within the period.

BOTDA based water-filling and preloading test of spiral case structure

  • Cui, Heliang;Zhang, Dan;Shi, Bin;Peng, Shusheng
    • Smart Structures and Systems
    • /
    • v.21 no.1
    • /
    • pp.27-35
    • /
    • 2018
  • In the water-filling and preloading test, the sensing cables were installed on the surface of steel spiral case and in the surrounding concrete to monitor the strain distribution of several cross-sections by using Brillouin Optical Time Domain Analysis (BOTDA), a kind of distributed optical fiber sensing (DOFS) technology. The average hoop strain of the spiral case was about $330{\mu}{\varepsilon}$ and $590{\mu}{\varepsilon}$ when the water-filling pressure in the spiral case was 2.6 MPa and 4.1 MPa. The difference between the measured and the calculated strain was only about $50{\mu}{\varepsilon}$. It was the first time that the stress adjustment of the spiral case was monitored by the sensing cable when the pressure was increased to 1 MPa and the residual strain of $20{\mu}{\varepsilon}$ was obtained after preloading. Meanwhile, the shrinkage of $70{\sim}100{\mu}{\varepsilon}$ of the surrounding concrete was effectively monitored during the depressurization. It is estimated that the width of the gap between the steel spiral case and the surrounding concrete was 0.51 ~ 0.75 mm. BOTDA based distributed optical fiber sensing technology can obtain continuous strain of the structure and it is more reliable than traditional point sensor. The strain distribution obtained by BOTDA provides strong support for the design and optimization of the spiral case structure.