• Title/Summary/Keyword: Steel materials

Search Result 5,381, Processing Time 0.033 seconds

Technology Trends of Metal Recovery from Wastewater (폐수(廢水) 중(中) 유가금속(有價金屬) 회수기술(回收技術) 동향(動向))

  • Hwang, Young-Gil;Kil, Sang-Cheol;Kim, Jong-Heon
    • Resources Recycling
    • /
    • v.22 no.3
    • /
    • pp.91-99
    • /
    • 2013
  • Steel industry which has been accomplishes the base of our country economy, automobile and electronic industry are taking charge of the role, whose electroplating is important. Large amount of wastewater and various metal salts, including hazardous materials was generated from the electroplating pre-treatment, plating, washing and post-plating. Currently, the general wastewater follows in the environmental law and neutralization after controlling, sludge where the various metal is mixed reclaims below multiple regulative and trust it is controlling. The sludge which includes the gas price metal reclaims in the field and trust it controls. a reclamation price of land it is insufficient but and the control expense holds plentifully and it loses the gas price metal which is valuable. Consequently, The research regarding to recover a gas price metal actively from this waste water, it is advanced. A new method to recover valuable metals from electroplating wastewater synthesis of metal sulfides using topical methods utilizing iron oxidizing bacteria, reagent of sulfides and solvent extraction using an organic solvent, such as the development of the law to recover these metals and metal sulfides of wastewater using selective recovery have been studied. By using these wastewater treatment method under frequency above 95%, it has been obtained the valuable metal from the wastewater, where the metal ion of Fe, Cu, Zn and Ni complexes was mixed. As we discuss the wastewater, which has been discharged from electroplating process, it is important and will be applied to the resources of metal in the urban mine.

Fiber-optic Temperature Sensor Using a Silicone Oil and an OTDR (OTDR을 이용한 실리콘 오일 기반의 광섬유 온도 센서)

  • Jang, Jae Seok;Yoo, Wook Jae;Shin, Sang Hun;Lee, Dong Eun;Kim, Mingeon;Kim, Hye Jin;Song, Young Beom;Jang, Kyoung Won;Cho, Seunghyun;Lee, Bongsoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1592-1597
    • /
    • 2015
  • In this study, we developed a fiber-optic temperature sensor (FOTS) based on a silicone oil and an optical time domain reflectometer (OTDR) to apply the measurement of a coolant leakage in the nuclear power plant. The sensing probe of the FOTS consists of a silicone oil, a stainless steel cap, a FC terminator, and a single mode optical fiber. Fresnel reflection arising at the interface between the silicone oil and the single mode optical fiber in the sensing probe is changed by varying the refractive index of the silicone oil according to the temperature. Therefore, we measured the optical power of the light signals reflected from the sensing probe. The measurable temperature range of the FOTS using a Cu-coated silica fiber is from $70^{\circ}C$ to $340^{\circ}C$ and the maximum operation temperature of the FOTS is sufficient for usage at the secondary system in the nuclear power plant.

THE EFFECT OF NiTi ROTARY INSTRUMENTATION ON THE CHANGE OF APICAL ROOT CANAL CURVATURE (NiTi Rotary Instrumentation이 근관만곡도 변화에 미치는 영향)

  • Lim, Hyoung-Tae;Hong, Chan-Ui;Cho, Yong-Bum
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.257-268
    • /
    • 1998
  • During cleaning and shaping of narrow and curved canals, it is very difficult or nearly impossible to maintain the original canal shape. Procedural accidents such as, ledge, zipping, perforation, and instrument breakage are frequently occurred and even may lead to failure of endodontic therapy. To prevent these kinds of accidents, various instrumentation techniques and materials have been introduced. Recently some nickel titanium (NiTi) files are introduced and it is reported that These NiTi files created rounder preparations with less transportation than conventional instruments in curved canals. This study compared the change of the canal curvature and procedural accidents after instrumentation produced by stainless steel K-flexo file, and NiTi rotary files (Profile 29 and Quantec 2000). Thirty narrow and curved canals (25-45 degree) of extracted human molars were randomly divided into three groups. In group 1, canals were instrumented using a step-back and watch-winding/pull motion with K-flexo files. In group 2, canals were prepared with Profile 29. Group 3, canals were prepared with Quantec 2000 files. Before and after preparation of canals, periapical radiographs were taken and scanned. The change of canal curvature were measured using Photoshop 4.0 program and the incidence of procedural accidents were also evaluated. The results were as follows: 1. All group showed some loss of canal curvature after instrumentation. 2. Average loss of canal curvature was $6.70{\pm}5.31$ degree for group 1, $3.80{\pm}2.57$ degree for group 2, and $5.40{\pm}4.83$ degree for group 3. All group There was significant change in curvature between before and after instrumentation (p<0.05). But there was no statistical difference amoung 3 groups. 3. In group I, there were no procedural accidents, such as ledging, perforation, or instrument fracture. In group 2, two cases of ledge and one case of instrument fracture were produced Goup 3, each one case of ledge, perforation and instrument fracture were occurred. Whthin the limits of above results, It seems that NiTi rotary instrumentation is not All Mighty and if we use uncarefully, it is more dangerous to produce some procedural accidents than conventional hand files. But more studies should be taken to evaluate the exact effects of NiTi rotary instrumentations.

  • PDF

A Study on the Shear Strengthening Characteristic of Reinforced Concrete T-shaped Beams (철근콘크리트 T형보의 전단 보강 특성에 관한 연구)

  • Kim, Jeong Sup;Shin, Yong Seok;Moon, Keum Hwan;Yoo, Myeong Hwan;Lee, Chang Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.10-18
    • /
    • 2012
  • Most of studies on existing strengthening methods were mainly on increase of stiffness and strength of shear strengthening to rectangular beam. As concrete of beam and slab is poured simultaneously on the characteristics of construction in reinforced concrete beam-slab structure, adjacent slab uniformed after hardening has T-shaped beam cross section which makes the flange of beam, enhances the stiffness of the beam and widens the area supporting compressive strength, but available data of flexural behavior of T-shaped beam are lacking. In this research the T-shaped beams would be made, then the reinforced effects and structural properties can be estimated according to the kinds of reinforced materials and reinforced position. The conclusions are shown as below. To sum up the experimental results, The specimen which was reinforce by CB embedded inside of concrete indicated excellent resistive behavior, internal force and stiffness when it was destroyed. The steel plate reinforced specimen of stiffness and internal force were increase but it expressed lower reinforce effects because of lowering anchored force between concrete. Fiber sheet strengthening showed superior effects but the interfacial delamination was found due to the lack of anchored force in destruction. So the measure is needed now.

A Study on the Fundamental Properties of Mortar Mixed with Converter Slag and Ferronickel Slag (전로슬래그 및 페로니켈슬래그를 혼입한 모르타르의 기초물성 연구)

  • Kim, Ji-Seok;Park, Eon-Sang;Ann, Ki-Yong;Cho, Won-Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.152-160
    • /
    • 2021
  • Converter steel slag(BOF slag) is a vast amount of solid waste generated in the steelmaking process which has very low utilization rate in Korea. Due to the presence of free CaO which can derive bad volume stability in BOF slag, it usually land filled. For recycling BOF and identify its applicability as fine aggregate, this study investigates the fundamental characteristics of mortar with cement replaced ferronickel slag(FNS), which has the potential to be used as a binder. The results suggest that the mineral phases of BOF slag mainly include larnite(CaSiO4), mayenite(Ca12Al14O33) and wuestite(FeO) while olivine crystallines are shown in FNS. The results of flow and setting time reveals that the flowability and process of hardening increased when the amount of FNS and BOF slag incorporated was increased. The length change shows that the amount of change in the length of the mortar was almost constant regardless of mix proportion while compressive strength was reduced. Micro structure test results revealed that FNS or/and BOF slag mix took a long time to react in the cement matrix to form a complete hydration products. To achieve the efficient utilization of B OF slag as construction materials, proper replacement rate is necessary.

Collision Behavior Comparison of Offshore Wind Tower as Type of Support Structure (지지구조의 형식에 따른 해상풍력타워의 선박충돌거동비교)

  • Lee, Gye-Hee;Kwag, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.2
    • /
    • pp.93-100
    • /
    • 2022
  • The collision behaviors of the tripod and jacket structures, which are considered as support structures for offshore wind towers at the Southwest sea of Korea, were compared by nonlinear dynamic analysis. These structures, designed for the 3 MW capacity of the wind towers, were modeled using shell elements with nonlinear behaviors, and the tower structure including the nacelle, was modeled by beam and mass elements with elastic materials. The mass of the tripod structure was approximately 1.66 times that of the jacket structure. A barge and commercial ship were modeled as the collision vessel. To consider the tidal conditions in the region, the collision levels were varied from -3.5 m to 3.5 m of the mean sea level. In addition, the collision behaviors were evaluated as increasing the minimum collision energy at the collision speed (=2.6 m/s) of each vessel by four times, respectively. Accordingly, the plastic energy dissipation ratios of the vessel were increased as the stiffness of collision region. The deformations in the wind tower occurred from vibration to collapse of conditions. The tripod structure demonstrated more collision resistance than the jacket structure. This is considered to be due to the concentrated centralized rigidity and amount of steel utilized.

A study of the space sterilization device using atmospheric-pressure DBDs plasma (대기압 유전체장벽방전을 적용한 플라즈마오존 공간살균장치에 관한 연구)

  • Oh, Hee-Su;Lee, Kang-yeon;Park, Ju-Hoon;Jeong, Byeong-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.281-289
    • /
    • 2022
  • Plasma ozone is utilized in a variety of applications in the field of sterilization due to its high sterilization performance. Dielectric materials used in DBD(dielectric barrier discharges) are mainly polymer, quartz and ceramics. These dielectric layers have the advantage of limiting the amount of supplied electron charge and allowing plasma to occur evenly on the surface of dielectric. Actually, the target or environment for sterilization is often a complex structure, so research and academic study are needed by utilizing the concept of space sterilization. In this study, the device is applied to generate DBD plasma at atmospheric pressure for disinfection due to the effectiveness in producing radicals and ozone. The generator of plasma ozone is a basic structure of dielectric barrier discharge by placing ceramic tube dielectrics and stainless steel electrical conductors at regular intervals. Various applications can be developed based on the proposed design method. Plasma ozone generation for space sterilization device is recognized as an excellent sterilization device. Through the design and verification of the device, we intend to establish an optimal design of the spatial sterilization device and provide the basis data for sterilization applications.

Metallurgical Study of Iron Artifacts from Guryong-ri Site in Ungcheon, Boryeong

  • Choi, Eun Young;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.38 no.4
    • /
    • pp.289-300
    • /
    • 2022
  • In the 6th and 7th centuries, 5 iron artifacts excavated form the Baekje Stone Tomb in Guryong-ri site, Ungcheon, Boryeong, were studied. The sample were metal microscopic observation, SEM-EDS analysis and Raman micro-spectroscopy analysis were conducted to understand the metallurgical characteristics. The microstructure observation showed the presence of ferrite and pearlite throughout, and differences in carbon content existed depending on the direction. Non-metallic inclusions were in the form of long lines, and most of them were wüstite, fayalite. It is indicated that the artifacts were forge welded using hypoeutectoid steel, with signs of carburizing and decarburizing processes. Some crystals with high P2O5, TiO2, CaO content were identified as sarcopside, ulvöspinel, and perovskite, respectively, through Raman spectroscopy. A comparison of the results with previous studies on the sites of Bujang-ri site in Seosan and Bongseon-ri site in Seocheon, which are adjacent sites in the coastal area, revealed that, while heat treatment technology was available, the artifacts were not heat-treated considering the purpose for use for these artifacts. The chemical composition of the non-metallic inclusions P2O5, TiO2, CaO were plotted in proportions to SiO2 and compared with adjacent sites. Considering that the P2O5/SiO2 ratio was widely distributed, the refining technology was not uniform. In addition, the TiO2/SiO2 ratio was found to be higher than that of other sites, meaning that a titanium-containing ore was used to manufacture the artifacts, unlike in surrounding sites, but it is not detected in all artifacts, so it may have been affected by various factors such as furnace walls in addition to raw materials. Although slag formers were used, considering the CaO/SiO2 ratio and the (Al2O3/SiO2)/(CaO/SiO2) ratio, which appear to be similar to the surrounding sites, but it is possible that CaO containing raw ore was used because it is also affected by the components of raw ore. As a result of the study, it is highly likely that ore different from that of the surrounding sites was used for production, but a more comprehensive comparative study with the surrounding sites is needed in the future.

A Study on the Numerical Analysis Methods for Predicting Strength Test Result of Box Girder under Bending Moment (휨 모멘트를 받는 박스거더 구조 강도 실험에 대한 수치해석 방법에 관한 연구)

  • Myung-Su Yi;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.488-496
    • /
    • 2023
  • Ship and bridge structures are a type of long box-shaped structure, and resistance to vertical bending moment is a key factor in their structural design. In particular, because box girders are repeatedly exposed to irregular wave loads for a long time, the continuous collapse behavior of structural members must be accurately predicted. In this study, plastic collapse behavior, including buckling according to load changes of the box girder receiving pure bending moments, was analyzed using a numerical analysis method. The analysis targets were selected as three box girders used in the Gordo experiment. The cause of the difference was considered by comparing the results of the structural strength experiment with those of non-linear finite element analysis. This study proposed a combination of the entire and local sagging shape to reflect the effect of the initial sagging caused by welding heat that is inevitably used to manufacture carbon steel materials. The procedures reviewed in the study and the contents of the initial sagging configuration can be used as a good guide for analyzing the final strength of similar structures in the future.

Effects of Fiber Orientations and Hybrid Ratios on Lubricant Tribological Characteristics of $Al_2O_{3f}/SiC_p$ Reinforced MMCs ($Al_2O_{3f}/SiC_p$ 금속복합재료의 섬유방향과 혼합비가 윤활마모특성에 미치는 영향)

  • Wang, Yi-Qi;Song, Jung-Il
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.15-23
    • /
    • 2009
  • The lubricant tribological characteristics of $Al_2O_3$ fiber and SiC particle hybrid metal matrix composites (MMCs) fabricated by squeeze casting method was investigated using a pin-on-disk wear tester. The wear tests of the MMCs were performed according to fiber/particle hybrid ratio in the planar-random (PR) and normal (N) orientations sliding against a counter steel disk at a fixed speed and $25\;kg_f$ loading under different sliding distances and temperatures. The test results showed that the wear behavior of MMCs varied with fiber orientation and hybrid ratio. At room temperature, the lubricant wear behavior of F20P0 unhybrid PR-MMCs was superior to that of N-MMCs while the hybrid composites exhibited the reverse lubricant wear behavior. It was also revealed that the wear resistance of PR-MMCs was superior to that of the N-MMCs due to the joint action of reinforcements and lubricant film between the friction surfaces at an elevated temperature of $100^{\circ}C$ for both fiber only and hybrid cases. In case of $150^{\circ}C$, although the trend of weight loss was similar to that of others, the wear resistance of PR-MMCs was better than that of N-MMCs for hybrid MMCs.