• 제목/요약/키워드: Steel for Construction

검색결과 3,432건 처리시간 0.03초

Evaluation of Friction Properties According to Normal Force and Direction of Wood Grain in Real Contact Area

  • Park, Chun-Young;Kim, Chul-Ki;Kim, Hyung-Kun;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제39권5호
    • /
    • pp.437-443
    • /
    • 2011
  • In Korea, there has been a traditional post and beam wood construction with large roof load. Because a large friction is generated in wooden joint or members, it is important to evaluate the friction between wood members according to wood direction. Because most of studies have been concerned with friction between wood and steel, excluding effect of real area of contact, there are a few studies on the friction between wood members. The object of this study was to evaluate friction or coefficient of friction according to normal force and real area of contact of wood. With Japanese larch (Larix kaempferi) test specimens, five steps of normal force and combinations of test were prepared. Results indicated that normal force had almost no affection on the friction, however there was difference about friction or coefficient of friction according to real contact conditions of wood grain and contact area.

Seismic performance of RC frames retrofitted with haunch technique

  • Akbar, Junaid;Ahmad, Naveed;Alam, Bashir;Ashraf, Muhammad
    • Structural Engineering and Mechanics
    • /
    • 제67권1호
    • /
    • pp.1-8
    • /
    • 2018
  • Shake table tests performed on five 1:3 reduced scale two story RC moment resisting frames having construction defects, have shown severe joint damageability in deficient RC frames, resulting in joint panels' cover spalling and core concrete crushing. Haunch retrofitting technique was adopted herein to upgrade the seismic resistance of the deficient RC frames. Additional four deficient RC frames were built and retrofitted with steel haunch; both axially stiffer and deformable with energy dissipation, fixed to the beam-column connections to reduce shear demand on joint panels. The as-built and retrofitted frames' seismic response parameters are calculated and compared to evaluate the viability of haunch retrofitting technique. The haunch retrofitting technique increased the lateral stiffness and strength of the structure, resulting in the increase of structure's overstrength. The retrofitting increased response modification factor R by 60% to 100%. Further, the input excitation PGA was correlated with the lateral roof displacement to derive structure response curve that have shown significant resistance of retrofitted models against input excitations. The technique can significantly enhance the seismic performance of deficient RC frames, particularly against the frequent and rare earthquake events, hence, promising for seismic risk mitigation.

Fire resistance evaluation of fiber-reinforced cement composites using cellulose nanocrystals

  • Lee, Hyung-Joo;Kim, Seung-Ki;Lee, Heon-Seok;Kang, Yong-Hak;Kim, Woosuk;Kang, Thomas H.K.
    • Advances in concrete construction
    • /
    • 제8권4호
    • /
    • pp.311-320
    • /
    • 2019
  • In this study, the effect of cellulose nanocrystals (CNCs) on the fire resistance properties of fiber-reinforced cement composites was investigated. The main variables were CNCs content (0.4, 0.8 and 1.2vol.% compared with cement), steel fiber ratio, and exposure temperature (100, 200, 400, 600 and 800℃). The fire resistance properties, i.e., residual compressive strength, flexural strength, and porosity, were evaluated in relation with the exposure temperature of the specimens. The CNCs suspensions were prepared to composited dispersion method of magnetic stirring and ultra-sonication. CNCs are effective for increasing the compressive strength at high temperatures but CNCs do not seem to have a significant effect on flexural reinforcement. Porosity test result showed CNCs reduce the non-hydration area inside the cement and promote hydration.

연강의 캐비테이션 침식-부식 특성에 관한 연구 (3) - 진동 캐비테이션 손상 억제 거동 - (Study on the Charactistics of Cavitation Erosion-Corrosion for Mild Steel(3) - Behavior of Erosion-Corrosion Damage Suppression Under Vibration Cavitation-)

  • 황재호;임우조;정기철
    • 수산해양기술연구
    • /
    • 제33권3호
    • /
    • pp.202-208
    • /
    • 1997
  • The component materials threatened by cavitation include ship propellers as well as turbine runners, pump impellers, pipe lines and radiators. Today it is known that cavitation damage takes place on many other components including on the coding water side of the cylinder liners of diesel engines. Cavitation erosion - corrosion implies damage to materials due to the shock pressure or shock wave that results when bubbles form and collapse at a metal surface within a liquid. To suppress cavitation erosion as well as cavitation erosion - corrosion to hydraulic equipment, innovations such as the improvement in the geometric design of the equipment or the selection of suitably resistant construction materials are necessary. In this study, we investigated that the cavitation erosion - corrosion damage under vibratory cavitation can be reduced by adding of side now velocity to the cavitation bubble group in order to eliminate bubbles formed in sea water environment.

  • PDF

단층활동시 매설 파이프라인의 거동에 대한 직접진단 시험모델 수치해석 (Numerical Analysis using Direct Shear Test Model for the Behavior of Buried Pipeline by the Fault Motion)

  • 장신남
    • 한국농공학회지
    • /
    • 제41권6호
    • /
    • pp.64-74
    • /
    • 1999
  • The frequency of earthquake occurrence tends to increase in Korea. Therefore, the stability of pipeline, such as watersupply pipe, gas pipe, and oil pipe etc. across fault zones in Gyoung-sang landmass is very important, expecially , in metropolitan area. There were some examples of the construction of buried pipeline across fault zones in Korea. the interactiion between the buried pipeline across fault zones and the ground is considered. As well, in the interfaces of them, the direct shear numerical analysis model including elasto-plastic joint element is assumed that the retained dilatancy theory in them, otherwise. Also, the other elements are modeled the ground is nonlinear elastic coutinuaus beam, respectively. In this study, the maximum shear force point exist inside retaine zone(anchored zone) during shwar (as fault sliding), and the distribution of pipeline's behavior is all alike them of pipeline buried in ladnsliding grounds. Since the pipeline is not continuous beam but jointed by steel-pipe segments , practically, on acting of a large bending moment or a shear force, then, those are may be unstable. The reaearch on this point may be new approach.

  • PDF

플라스틱 온실의 폭설피해 방지를 위한 가지주 장치 개발 (Development of a Temporary Pole Supporting System to Protect the Plastic Greenhouses from Heavy Snow Damage)

  • 남상운
    • 한국농공학회지
    • /
    • 제44권4호
    • /
    • pp.107-113
    • /
    • 2002
  • The pipe framed and arch shape plastic greenhouse, which is the most popular greenhouse in Korea, is relatively weak in snowdrift. Reinforcement of rigid frame or column is required to reduce the damage from heavy snow in this type. But additional rigid frames or columns decrease light transmissivity or workability, and increase construction cost. So it is desirable to prepare some temporary poles and to install them when the warning of heavy snow is announced. This study was carried out to develop the temporary pole supporting system using galvanized steel pipes for plastic housing and to evaluate the safe snow load on a temporary pole. A pipe connector, which is inserted in the top of pipe used in the temporary pole and supports the center purline, was designed and manufactured to be able to carry the upper loads safely. And a bearing plate was safely designed and manufactured in order to carry the loads acting on it to the ground. When temporary poles of ${\phi}$ 25 pipe are installed at 2.4m interval, it shows that the single span plastic greenhouses with 5~7 m width are able to support the additional snow depth of 13.9~25.3 cm beyond the snow load supported by main frame.

고속전철 PSC 박스거더교 합성거동의 현장 계측에 관한 연구 (Field Investigation of Composite Behavior in High-speed Railway PSC Box Girder Bridge)

  • 김영진;김병석;강재윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회 논문집(II)
    • /
    • pp.995-1000
    • /
    • 2000
  • Segmentally erected prestressed concrete box girder bridges have been widely used in Korean high speed railway. Segmental erection has been accomplished along the longitudinal direction and across the depth of cross section. The cross section is similar to a composite cross section, composed of old and new segments. Because these segments have different time-dependent creep and shrinkage properties, a stress redistribution takes place during the construction period. It is the main objective in this research to investigate this behavior. An actual bridge was instrumented with 96 vibrating wire embedded type strain gauges, 6 electronic type steel strain gauges, and 75 thermocouples. Two span continuous high speed railway bridge was selected. Two points of importance, such as the midpoint of the first span and the point of interior support, along the span of the girder were chosen to monitor the time dependent behaviors for an extended period of time. The data collection was starting just after concrete girder were cast and is still going on. According to the measured results, the strain distributions across the depth of the section at midspan and interior support were not continuous and the important redistribution of stresses takes place. Thus, rational design of prestressed concrete composite box girder bridges need.

프리스트레스트 콘크리트 박스거더의 횡방향 극한거동 실험 연구 (Lateral ultimate behavior of prestressed concrete box girder bridges)

  • 오병환;최영철;이성철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.479-482
    • /
    • 2005
  • The concrete box girder members are extensively used as a superstructure in bridge construction. The load carrying capacity of concrete box girders in lateral direction is generally influenced by the sizes of haunch and web. The internal upper decks are restrained by the webs and exhibit strength enhancement due to the development of aching action. The current codes do not have generally consider the arching action of deck slab in the design because of complexity of the behavior. However, there are significant benefits in utilizing the effects of arching action in the design of concrete members. The main objective of this paper is to propose a rational method to predict the ultimate load of deck slab by considering various haunch sizes and web restraint effect of concrete box girder bridges. To this end, a comprehensive experimental program has been set up and seven large-scale concrete box girders have been tested. A transverse analysis model of concrete box girders with haunches is proposed and compared with test data. The results of present study indicate that the ultimate strength is significantly affected by haunch dimension. The increase of strength due to concrete arcing action is reduced with an increase of prestressing steel ratio in laterally prestressed concrete box girders and increases with a larger haunch dimension. The proposed theory allows more realistic prediction of lateral ultimate strength for rational design of actual concrete box girder bridges.

  • PDF

강봉으로 긴장한 프리캐스트 원형교각의 설계 (Design of Precast Circular Piers with Prestressing Bars)

  • 심창수;정철헌;윤재영;김철환;이용진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.121-124
    • /
    • 2008
  • 교량 하부의 급속시공 기술은 교량 설계의 새로운 경향이다. 부착 강봉으로 프리스트레스를 도입하는 프리캐스트 교각 시스템을 제안한다. 이 논문에서는 부착 강봉으로 프리스트레스가 도입된 프리캐스트 원형 교각의 준정적 실험을 통해 내진 성능 평가를 하였다. 기둥의 세그먼트 연결부의 전단강도 보강을 위해 모르터로 충전된 원형강관을 사용하였다. 프리캐스트 교각의 변위연성도와 에너지 소산능력을 평가하였다. 제안된 프리캐스트 교각 시스템은 요구연성도보다 더 좋은 내진성능을 보였다. 실험적 연구를 바탕으로 경전철 교량의 하부구조를 설계하고, 설계 고려사항에 대해 검토하였다.

  • PDF

Nonlinear Analysis of Reinforced and Prestressed Concrete Shells Using Layered Elements with Drilling DOF

  • 김태훈;최정호;김운학;신현목
    • 콘크리트학회논문집
    • /
    • 제17권4호
    • /
    • pp.645-654
    • /
    • 2005
  • This paper presents a nonlinear finite element procedure for the analysis of reinforced and prestressed concrete shells using the four-node quadrilateral flat shell element with drilling rotational stiffness. A layered approach is used to discretize, through the thickness, the behavior of concrete, reinforcing bars and tendons. Using the smeared-crack method, cracked concrete is treated as an orthotropic nonlinear material. The steel reinforcement and tendon are assumed to be in a uni-axial stress state and to be smeared in a layer. The constitutive models, which cover the loading, unloading, and reloading paths, and the developed finite element procedure predicts with reasonable accuracy the behavior of reinforced and prestressed concrete shells subjected to different types of loading. The proposed numerical method fur nonlinear analysis of reinforced and prestressed concrete shells is verified by comparison with reliable experimental results.