• 제목/요약/키워드: Steel for Construction

검색결과 3,432건 처리시간 0.027초

FSM에 의한 다층 원통쉘의 동적 특성에 관한 연구 (Dynamic Characteristics of Laminated Shells by Finite Strip Mehod)

  • Park, Sungjin
    • 한국재난정보학회 논문집
    • /
    • 제11권4호
    • /
    • pp.534-541
    • /
    • 2015
  • 본 연구는 양단이 단순지지된 조건을 갖는 다층 원통쉘을 해석하는 방법을 제시하였고, 3차원 응력 특성을 규명한 것이다. 지배방정식은 편미분방정식을 상미분방정식으로 변환을 가정한 유한요소 개념을 이용하여 유한대판법 해석법을 이용하여 수치해서하였다. 특히 단순지지 조건을 갖는 3차원 다층원통쉘에 대해서는 시행함수로서 삼각함수로 구성되는 보의 고유함수로 구성되는 경우에 대해 해석하였다. 층 재료는 강재 또는 콘크리트로하고 층두께, 원통길이 등 파라메터를 다양하게 변화시켜 다층원통쉘에 미치는 영향을 검토한다.

프리스트레스트 강합성 Double T-Beam의 휨거동 특성에 관한 실험적 연구 (An Experimental Study on the Flexural Behavior of Prestressed Composite Double T-Beams)

  • 홍성남;김광수;한경봉;박선규;유병억
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제11권1호
    • /
    • pp.49-56
    • /
    • 2007
  • 기존의 Double T-Beam은 단면 형상이 갖는 단순함과 세련된 도시적 미관을 갖추고 있기 때문에 미국이나 유럽 등지에서 적극 시공되고 있으나 역학적 저항능력이 상대적으로 취약할 뿐만 아니라 제한된 특수 시공 방법을 사용해야 한다는 문제점이 있다. 이에 본 연구에서는 기존의 Double T-Beam의 문제점을 해결하기 위해 콘크리트와 강재의 장점만을 취합한 강합성 보를 사용하였고, 긴장력을 도입하여 구조적으로 보다 안정성을 갖춘 프리스트레스트 강합성 Double T-Beam의 개발 가능성을 제시하고자 하였다.

볼트수의 변화가 더블앵글 접합부의 회전강성에 미치는 영향 (The Effect of the Variation of the Number of Bolts on the Rotational Stiffnesses of Double Angle Connections)

  • 양재근;김호근;김기환
    • 한국공간구조학회논문집
    • /
    • 제4권1호
    • /
    • pp.69-75
    • /
    • 2004
  • 저층 철골조의 시공에 있어서 더블앵글 접합부는 매우 효과적인 접합부의 한 형태로 취급된다. 더블앵글 접합부의 접합부 강성은 앵글의 두께, 볼트 게이지 거리, 볼트의 개수 등과 같은 여러 변수에 따라서 변화한다. 본 연구에서는 볼트수의 변화가 더블앵글 접합부의 모멘트-회전각 관계에 미치는 영향을 파악하기 위하여 세 개의 더블앵글 접합부 실험이 수행되었다. 각각의 실험결과에 근거하여 각 실험에 사용된 더블앵글의 회전강성은 회귀분석을 통하여 산정되었다. 회귀분석결과 더블앵글 접합부의 접합부 강성은 볼트의 개수가 증가함에 따라서 함께 증가한다는 결론을 얻었다.

  • PDF

Two-dimensional nonconforming finite elements: A state-of-the-art

  • Choi, Chang-Koon;Kim, Sun-Hoon;Park, Young-Myung;Chung, Keun-Young
    • Structural Engineering and Mechanics
    • /
    • 제6권1호
    • /
    • pp.41-61
    • /
    • 1998
  • A state-of-the-art report on the new finite elements formulated by the addition of nonconforming displacement modes has been presented. The development of a series improved nonconforming finite elements for the analysis of plate and shell structures is described in the first part of this paper. These new plate and shell finite elements are established by the combined use of different improvement schemes such as; the addition of nonconforming modes, the reduced (or selective) integration, and the construction of the substitute shear strain fields. The improvement achieved may be attributable to the fact that the merits of these improvement techniques are merged into the formation of the new elements in a complementary manner. It is shown that the results obtained by the new elements give significantly improved solutions without any serious defects such as; the shear locking, spurious zero energy mode for the linear as well as nonlinear benchmark problems. Recent developments in the transition elements that have a variable number of mid-side nodes and can be effectively used in the adaptive mesh refinement are presented in the second part. Finally, the nonconforming transition flat shell elements with drilling degrees of freedom are also presented.

Load-deflection analysis prediction of CFRP strengthened RC slab using RNN

  • Razavi, S.V.;Jumaat, Mohad Zamin;El-Shafie, Ahmed H.;Ronagh, Hamid Reza
    • Advances in concrete construction
    • /
    • 제3권2호
    • /
    • pp.91-102
    • /
    • 2015
  • In this paper, the load-deflection analysis of the Carbon Fiber Reinforced Polymer (CFRP) strengthened Reinforced Concrete (RC) slab using Recurrent Neural Network (RNN) is investigated. Six reinforced concrete slabs having dimension $1800{\times}400{\times}120mm$ with similar steel bar of 2T10 and strengthened using different length and width of CFRP were tested and compared with similar samples without CFRP. The experimental load-deflection results were normalized and then uploaded in MATLAB software. Loading, CFRP length and width were as neurons in input layer and mid-span deflection was as neuron in output layer. The network was generated using feed-forward network and a internal nonlinear condition space model to memorize the input data while training process. From 122 load-deflection data, 111 data utilized for network generation and 11 data for the network testing. The results of model on the testing stage showed that the generated RNN predicted the load-deflection analysis of the slabs in acceptable technique with a correlation of determination of 0.99. The ratio between predicted deflection by RNN and experimental output was in the range of 0.99 to 1.11.

Experimental study on the stress-strain relation of PVC-CFRP confined reinforced concrete column subjected to eccentric compression

  • Yu, Feng;Kong, Zhengyi;Li, Deguang;Vu, Quang-Viet
    • Advances in concrete construction
    • /
    • 제10권2호
    • /
    • pp.151-159
    • /
    • 2020
  • An experimental study on the stress-strain relation of PVC-CFRP confined reinforced concrete columns subjected to eccentric compression was carried out. Two parameters, such as the CFRP strips spacing and eccentricity of axial load, were considered. The experimental results showed that all specimens failed by compressive yield of longitudinal steel bar and rupture of CFRP strips. The bearing capacity of specimen decreases as the eccentricity or the CFRP strips spacing increases. The stress-strain relation of specimens undergoes two stages: parabolic and linear stages. In the parabolic stage, the slope of stress-strain curve decreases gradually as the eccentricity of axial loading increases while the CFRP strips spacing has little effect on the slope of stress-strain curve. For the linear stage, the slope of stress-strain curve decreases as the eccentricity of axial load or the CFRP strips spacing increases. A model for predicting the stress-strain relation of columns under eccentric compression is proposed and it agrees well with various test data.

Overview of the Benefits of Structural Fire Engineering

  • Jowsey, Allan;Scott, Peter;Torero, Jose
    • 국제초고층학회논문집
    • /
    • 제2권2호
    • /
    • pp.131-139
    • /
    • 2013
  • The field of structural fire engineering has evolved within the construction industry, driven largely by the acceptance of performance-based or goal-based design. This evolution has brought two disciplines very close together - that of structural engineering and fire engineering. This paper presents an overview of structural systems that are frequently adopted in tall building design; typical beams and columns, concrete filled steel tube columns and long span beams with web openings. It is shown that these structural members require a structural analysis in relation to their temperature evolution and failure modes to determine adequate thermal protection for a given fire resistance period. When this is accounted for, a more explicit understanding of the behaviour of the structure and significant cost savings can be achieved. This paper demonstrates the importance of structural fire assessments in the context of tall building design. It is shown that structural engineers are more than capable of assessing structural capacity in the event of fire using published methodologies. Rather than assumed performance, this approach can result in a safe and quantified design in the event of a fire.

Large scale fire test on a composite slim-floor system

  • Bailey, C.G.
    • Steel and Composite Structures
    • /
    • 제3권3호
    • /
    • pp.153-168
    • /
    • 2003
  • This paper discusses the results and observations from a large-scale fire test conducted on a slim floor system, comprising asymmetric beams, rectangular hollow section beams and a composite floor slab. The structure was subjected to a fire where the fire load (combustible material) was higher that that found in typical office buildings and the ventilation area was artificially controlled during the test. Although the fire behaviour was not realistic it was designed to follow as closely as possible the time-temperature response used in standard fire tests, which are used to assess individual structural members and forms the bases of current fire design methods. The presented test results are limited, due to the malfunction of the instrumentation measuring the atmosphere and member temperatures. The lack of test data hinders the presentation of definitive conclusions. However, the available data, together with observations from the test, provides for the first time a useful insight into the behaviour of the slim floor system in its entirety. Analysis of the test results show that the behaviour of the beam-to-column connections had a significant impact on the overall structural response of the system, particularly when the end-plate of one of the connections fractured, during the fire.

철근콘크리트 원형단면교각의 횡방향철근량에 관한 설계비교 (Comparative Study of Design Codes on the Transverse Steel Amount of Circular Reinfored Concrete Columns)

  • 배성용;곽동일;김희덕
    • 한국해양공학회지
    • /
    • 제15권1호
    • /
    • pp.98-103
    • /
    • 2001
  • This paper is conducted to compare the seismic design standard of a bridge column such as the Korean Bridge Design Standard(KBDS), EC 8, NZS 3101 and ATC 32. The KBDS adopted the seismic design requirements in 1992. The earthquake magnitude in Korea is compared with those in the west coast of the USA. It may be said that the current seismic design requirements of the KBDS provides design results, that are too conservative especially for transverse reinforcement details and amounts in reinforced concrete columns. This fact usually creates construction problems in concrete casting, due to congestion of transverse reinforcement. Furthermore, the effective stiffness; $I_{eff}$ depends on both the axial load P/$A_gF_{ck}$ and the longitudinal reinforcement ratio $A_{st}/A_g, so it is the conservative to use the effective stiffness I$_{eff}$ than the gross section stiffness Ig. Seismic design for the transverse reinforcement content of the concrete column was analyzed and considered to have an extreme-fiber compression strain, response modification factor, axial load and effective stiffness etc.c.

  • PDF

Design of multiphase carbon fiber reinforcement of crack existing concrete structures using topology optimization

  • Nguyen, Anh P.;Banh, Thanh T.;Lee, Dongkyu;Lee, Jaehong;Kang, Joowon;Shin, Soomi
    • Steel and Composite Structures
    • /
    • 제29권5호
    • /
    • pp.635-645
    • /
    • 2018
  • Beam-column joints play a significant role in static and dynamic performances of reinforced concrete frame structures. This study contributes a numerical approach of topologically optimal design of carbon fiber reinforced plastics (CFRP) to retrofit existing beam-column connections with crack patterns. In recent, CFRP is used commonly in the rehabilitation and strengthening of concrete members due to the remarkable properties, such as lightweight, anti-corrosion and simplicity to execute construction. With the target to provide an optimal CFRP configuration to effectively retrofit the beam-column connection under semi-failure situation such as given cracks, extended finite element method (X-FEM) is used by combining with multi-material topology optimization (MTO) as a mechanical description approach for strong discontinuity state to mechanically model cracked structures. The well founded mathematical formulation of topology optimization problem for cracked structures by using multiple materials is described in detail in this study. In addition, moved and regularized Heaviside functions (MRHF), that have the role of a filter in multiple materials case, is also considered. The numerical example results illustrated in two cases of beam-column joints with stationary cracks verify the validity, benefit and supremacy of the proposed method.