• Title/Summary/Keyword: Steel cutting

Search Result 530, Processing Time 0.024 seconds

Analysis of various composite patches effect on mechanical properties of notched Al-Mg plate

  • Meran, Ahmad P.;Samanci, Ahmet
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.685-692
    • /
    • 2017
  • In this study, the effect of various adhesively bonded composite patches on mechanical properties of notched Al-Mg alloy plates was analyzed. For this purpose firstly, the un-notched and notched specimens were fabricated from 5086 Al-Mg alloys which have been used in armor-plated military vehicles. The surface notches as a flaw were machined with circular cutting tool to form notch aspect ratio a/c=0.15 and notch-to-thickness ratios a/t=0.5 in the radial direction on the test specimens. Then, various composite patches which reinforced by glass, carbon and Kevlar fibers were bonded adhesively at elliptically surface notches. Finally, experimental measurements conducted by applying tensile static loading. The experimental results showed that repairing with composite patches with order of carbon, glass and Kevlar fibers have remarkable effect on tensile strength of the notched plate. Also the finite element models were developed using Abaqus/Explicit code to predict the tensile strength and elongation of unrepaired notched specimen and specimen repaired by carbon fiber composite patch. The comparison between numerical and experimental results showed good agreement between them and proved the accuracy of numerical modeling.

On the Grounding Damage of Ship Bottom Stiffened Platings(Part I: Experiment) (좌초시 선저보강판의 손상에 관한 연구(제1보: 실험))

  • Jeom-K. Paik;Myung-H. Hyun;Tak-K. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.1
    • /
    • pp.121-132
    • /
    • 1994
  • The aim of the present paper is to clarify the damage characteristics fur ship bottom stiffened platings in grounding. For this purpose, a series of tests are performed. A rigid wedge is quasi-statically pushed into the high tensile steel plates with two stiffeners. The aspect ratio of plates(a/B) is in the range from 1.0 to 2.5 and the thickness of plates is in the range from 3.4 to 7.0mm. Also other parameters, namely the shape of wedge tip, wedge angle and property/direction of stiffeners are varied. The test is carried out using the 100ton universal test machine. During the loading. both applied force and length of cutting(penetration) resulting in the grounding force-penetration response are measured.

  • PDF

Real-Time Prediction for Product Surface Roughness by Support Vector Regression (서포트벡터 회귀를 이용한 실시간 제품표면거칠기 예측)

  • Choi, Sujin;Lee, Dongju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.117-124
    • /
    • 2021
  • The development of IOT technology and artificial intelligence technology is promoting the smartization of manufacturing system. In this study, data extracted from acceleration sensor and current sensor were obtained through experiments in the cutting process of SKD11, which is widely used as a material for special mold steel, and the amount of tool wear and product surface roughness were measured. SVR (Support Vector Regression) is applied to predict the roughness of the product surface in real time using the obtained data. SVR, a machine learning technique, is widely used for linear and non-linear prediction using the concept of kernel. In particular, by applying GSVQR (Generalized Support Vector Quantile Regression), overestimation, underestimation, and neutral estimation of product surface roughness are performed and compared. Furthermore, surface roughness is predicted using the linear kernel and the RBF kernel. In terms of accuracy, the results of the RBF kernel are better than those of the linear kernel. Since it is difficult to predict the amount of tool wear in real time, the product surface roughness is predicted with acceleration and current data excluding the amount of tool wear. In terms of accuracy, the results of excluding the amount of tool wear were not significantly different from those including the amount of tool wear.

Enrichment of iron element from sulfur-containing iron tailings by S-HGMS technology

  • Zhou, Ya-qian;Yang, Rui-ming;Guo, Peng-hui;Li, Su-qin;Xing, Yi
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.3
    • /
    • pp.5-9
    • /
    • 2021
  • Comprehensive utilization of sulfur-containing iron tailings (SIT) not only solves environmental problems but also creates certain economic value. The iron element from SIT was enriched by the superconducting high gradient magnetic separation (S-HGMS) technology in this study. In the experiments, the total iron content (TFe) was increased from 26.3% to 60.5% with the total sulfur content (TS) of 5.9% under the optimal parameters, i.e., a magnetic flux density of 0.4 T, a slurry flow rate of 1500 mL/min. The high-quality sulfur-containing material with TFe of more than 60% was obtained, which can be used for preparing high-sulfur free cutting steel. The S-HGMS technology can realize the resource utilization of iron tailings with high added value.

Fabrication and Experiment of Pneumatic Steel Plate Chamfering Machine and Sensor System for Active Control of Chamfering (면취 공정의 능동 제어를 위한 공압식 자동 강재 면취기와 센서 시스템의 제작 및 실험)

  • Na, Yeong-min;Lee, Hyun-seok;Kim, Min-hyo;Park, Jong-kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.80-86
    • /
    • 2020
  • With the exception of welding activities, it is forbidden to use electricity in shipyards, owing to safety concerns such as the possibility of fire, explosions, and short circuits. In this paper, an automatic chamfering machine using pneumatics is proposed for use in such environments. Customers specify their requirements and the machine derives the corresponding theoretical design conditions. The proposed machine was used to perform 3D modeling, and its suitability and performance were confirmed via cutting experiments of the manufactured device. Two types of sensors may be used in this system: contact and non-contact. In the case of the contact type, an end-stop switch that can recognize the end of the material is installed, and when the machine reaches the end of the material, the end-stop switch is operated to cut off the air pressure. In the non-contact type, four sensors were used: photonic, ultrasonic, metal detection, and encoder. The use of the four sensors was repeated 30 times, and the average error determined. Thus, the optimum sensor was identified.

New method environment for art design of nanocomposite brick facade of the building

  • Jie Xia;Gholamreza Soleimani Jafari;F. Ghoroughi
    • Steel and Composite Structures
    • /
    • v.51 no.5
    • /
    • pp.499-507
    • /
    • 2024
  • The paper delves into an emerging paradigm shift in architectural design, focusing on the development of a cutting-edge methodological framework for the artistic enhancement of nanocomposite brick facades in building construction. This innovative approach represents a fusion of art and science, harnessing the potential of advanced nanotechnology to redefine the aesthetic and functional properties of building exteriors. Central to this new methodology is the integration of state-of-the-art materials and fabrication techniques, aimed at not only elevating the visual appeal of architectural structures but also enhancing their structural robustness and environmental sustainability. By leveraging the unique characteristics of nanocomposite materials, the proposed method opens up new possibilities for pushing the boundaries of traditional brick facade design. Through a meticulous exploration of the intricacies involved in implementing this novel approach, the paper elucidates the transformative impact it can have on the architectural landscape. By marrying creativity with technical precision, the method environment for art design of nanocomposite brick facades promises to usher in a new era of sustainable, visually captivating, and structurally resilient building facades that are poised to redefine the very essence of architectural aesthetics.

Application of Prefabricated Retaining Walls with Steel Lagging (강재 요소를 적용한 조립식 흙막이 벽체에 관한 연구)

  • Hong, Jong woo;Choi, Jae Soon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.1277-1285
    • /
    • 2015
  • It has been known that the conventional retaining wall system with timber lagging and H pile has several problems such as the irregular gap between H-piles, cutting or adding to standard timber, back fill over first step excavation, and especially break-down accident at the disjoint of wall system. In the practical excavation, these problems may lead to worker's accident and the inefficiency of construction economy. To solve the above problems, a new method using prefabricated retaining wall was proposed and verified. The characteristics of the new method is to replace timber wall as free-sliding steel-lagging and connector. To check its verification and application, laboratory tests such as bending strength, tensile strength, and fatigue strength were carried out. Also, a pilot test in the field and numerical simulations under various ground conditions were performed. From the researches, it is found that the prefabricated retaining wall plate can be superior to the conventional timber lagging plate in the strength. It is also found that the proposed methods can be effective in the reuse of retaining wall plate and safe in the disjoint of wall system. Finally, it is desired that the proposed method will be effective in the reduction of the imported timbers and helpful in the safety of retaining wall construction.

A Study on the Design Concept & Construction Method of Office Building with Stacks at Thermal Power Plant (화력발전소 연돌통합형 종합사무동의 설계개념과 시공공법 연구)

  • Kim, Si-Hyun;Choi, Jang-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.677-686
    • /
    • 2016
  • A thermal power plant is the first CFBC (Circulating Fluidized Bed Combustion) power plant consisting of 2 boilers-1 turbine. The optimal height of a stack needs to be approximately 156 meters in the case of this thermal power plant; however, the thermal power plant sites satisfy a function and reduce the construction cost by using mountains in the sites after cutting the ground and locating an integrated office and chimney at an altitude of 70 meters thereby lowering the height of the stack to 86 meters. In addition, the integrated office, which has a combined stack style with a unique design, is constructed by connecting with 2 stacks and disposing the office and an observatory in the space between them. Therefore, this study examined the design concept that fulfils the structural, functional, and aesthetic factors, harmoniously by joining the integrated office and the stack, which are disparate, and investigated special construction methods (Slip Form, Steel Inner Flue & Lift-up) through which heterogeneous architectures are structurally, functionally, and aesthetically constructed.

Evaluation of the Shape Accuracy of Turning Operations (선삭가공에서의 형상 정밀도에 대한 평가)

  • Park, Dong-Keun;Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1645-1651
    • /
    • 2015
  • This paper describes the changes of shape accuracy in workpiece materials depending on the turning clearance angle. The experiments started from choosing three workpiece materials, SM45C(machine structural carbon steel), STS303(stainless steel) and SCM415 (chrome-molybdenum steel). The experiments showed specifically how features of selected materials changed when they were processed with diverse machining depths, 0.1 mm, 0.2 mm and 0.3 mm, with various negative angles, $0.0^{\circ}(-6.0^{\circ})$, $0.3^{\circ}(-6.3^{\circ})$ and $0.9^{\circ}(-6.9^{\circ})$, and called cutting edge inclination starting from a fixed rotational speed, 2,500 rpm, focusing on the feed rate, 0.07 mm/rev and 0.10 mm/rev. The results of the accuracy of processing, cylindricity, deviation from coaxiality, etc. were compared using the graph and table. The accuracy of cylindricity in the order of degree $0.0^{\circ}{\rightarrow}0.3^{\circ}{\rightarrow}0.9^{\circ}$ depending on the workpiece materials showed the best cylindricity when it was $0.9^{\circ}$. In conclusion, the accuracy improved in specific degrees irrespective of the quality of the materials when the bite negative angles increased. This means that workability improved in these experiments. In addition, the processing shape changed depending on depth of the cut and feed rate.

Inhibition Effect of Sanitizers against E. coli and a Hygienic Condition on the Surface of Utensils and Equipments Used to Food Service (급식기구 표면의 위생상태 및 대장균 소독효과)

  • 김이선;전영수;한지숙
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.6
    • /
    • pp.965-970
    • /
    • 2002
  • This study was conducted to investigate inhibition effect of sanitizers against E. coli and a hygienic condition on the surface of utensils and equipments which were used to food service. Samples swabbed using cotton were collected from the surface of stainless steel, wood and plastic utensils and equipments which were used to food service at four elementary schools in Busan and analyzed by measuring the total, coliform and Salmonella spp. count. Total plate counts were 10$^4$~10$^{5}$ CFU/100 cm$^2$ in most of utensils and equipments except plastic cutting board. There were lots of coliforms in slicer (2.8$\times$10$^1$CFU/100 cm$^2$) and peeler (1.1$\times$10$^1$CFU/100 cm$^2$). It was indicated that the sanitary condition of some utensils and equipments such as slicer and peeler should be improved promptly. To investigate inhibition effect of sanitizers against E. coli, the surface of utensils and equipments used in food service was treated at different concentration of sodium hypochlorite for 1 minute and 3 minutes, respectively. The plastic utensils and equipments were most effective aganist E. coli at 100 ppm sodium hypochlorite for 3 minutes. But the stainless steel and wood were most effective at 200 ppm sodium hypochlorite for 3 minutes. It was also treated with 70% ethyl alcohol for 10 seconds and 30 seconds, respectively. The stainless steel utensils and equipments were most effective aganist E. coli at 10 seconds, but plastic and wood were most effective at 30 seconds. Therefore, the results of this study indicated that standardization of disinfection method of utensils and equipments used in food service should be given and sanitation training for dietition should be conducted continuously.