• Title/Summary/Keyword: Steel brush loading platen

Search Result 2, Processing Time 0.016 seconds

Development of a roller supported piston type loading platen reducing the frictional restraint along the interfaces between the specimen and platens under the biaxial loading condition (이축압축 조건에서 실험체/재하판 경계면상의 마찰저항 감소를 위한 롤러 지지된 피스톤 형태의 하중재하판의 개발)

  • SaGong, Myung;Kim, Se-Chyul;Lee, J.S.;Park, Du-Hee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.3
    • /
    • pp.303-312
    • /
    • 2008
  • Multi-axial compression tests have been frequently adopted for the evaluation of material properties of rock cores and rock fracture model tests. Special care has to be applied on the boundary condition between the specimen and loading platen to draw the precise test results of the multi-axial compression tests. With the use of dry steel platen, the stress rotation will occur, due to the frictional restraint from the boundary between the specimen and loading platen. The restraint will deviate the expected test results under the conditions of the given external pressures. Various methods have been applied to reduce the side restraint along the specimen/loading platen interface. The steel brush type loading platen is one example of the attempts. In this paper, a new type of loading platen is introduced to overcome the limitation caused by the use of the brush type loading platen, which requires some internal space for the installation of the brushes. The new type of loading platen, roller supported steel piston type loading platen. is constituted of shot steel pistons which have sufficient stiffness to deliver the external pressure and the shaft type roller installed at the rear of the pistons. The pistons are designed to follow the local deformation of the specimens. In this paper, structural details of the loading platen are presented and frictional and biaxial compression tests results are shown to verify the required functions of the loading platen. Furthermore, calibration process is followed by a comparison between the test results and numerical analyses.

  • PDF

Structural design method of the steel brush type loading platen adopted in multi-axial compression experiments (다축압축 실험에 적용되는 철제 빗살구조 재하판의 구조 설계 기법)

  • SaGong, Myung;Lee, Jun-S.;Kim, Sung-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.4
    • /
    • pp.351-359
    • /
    • 2007
  • Multi-axial compression tests have been frequently conducted to evaluate the in situ properties of rock masses and the mechanical behaviors of rock strata through the model tests. Without the proper boundary condition for the model tests, the mechanical behavior of rock mass would deviate, as can be expected, from the in situ conditions. The boundary condition will affect the internal stress distribution of the specimens and cause some distortion on the measurement. In this study, a design process regarding the steel brush, which has been employed for multi-axial compression test to reduce the frictional restraint along the specimen/loading platen interface, is introduced. The individual brushes are regarded as a simple column and beam to calculate the cross-sectional size and length of the brushes in consideration of the buckling capacity and the allowable deflection.

  • PDF