• Title/Summary/Keyword: Steel bridge

Search Result 1,671, Processing Time 0.029 seconds

Shear Experiments on Concrete Filled PHC Pile with Composite Shear Connectors with Rebar Holes (보강 철근 정착 홀을 갖는 합성 전단연결재를 적용한 콘크리트 충전 PHC말뚝의 전단성능 평가)

  • Kim, Jeong-Hoi;Park, Young-Shik;Min, Chang-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.259-266
    • /
    • 2017
  • The purpose of this study was to contribute to the field application cost effectively and reasonably by developing the functional piles that reinforces shear force. CFP pile (Concrete Filled Pretensioned Spun High Strength Concrete Pile with Ring type Composite shear connectors) developed in this study increases the shear stress by placing composite shear connector and filling the concrete into hollow part of the pile. By placing the reinforcement (H13-8ea) and the reinforcement (H19-8ea) into hollow section inside of PHC piles, it also improves the shear strength due to increasing steel ratio. It reinforces shear strength effectively by dowel force that is generated by putting reinforcement (H13-8) into the holes of composite shear connectors for the composite behavior of filled concrete and PHC pile. The study was reviewed and compared the calculated result of the shear strength by limit state design method highway bridge design standards (2012) and experiment result of the shear strength by KS F 4306. We can design the shear strength reasonably as the safety ratio of 2.20, 2.15, 2.05 is shown comparing to design shear strength, according to design shear strength on each cross sections and the experiment results of the CFP pile.

Assessment of System Reliability and Capacity-Rating of Composite Steel Box-Girder Highway Bridges (합성 강 상자형 도로교의 체계신뢰성 해석 및 안전도평가)

  • Cho, Hyo Nam;Lee, Seung Jae;Kang, Kyoung Koo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.51-59
    • /
    • 1993
  • This paper develops practical and realistic reliability models and methods for the evaluation of system-reliability and system reliability-based rating of various types of box-girder bridge superstructures. The strength limit state model for box-girder bridges suggested in the paper are based on not only the basic flexural strength but also the strength interaction equations which simultaneously take into account flexure, shear and torsion. And the system reliability problem of box-girder superstructure is formulated as parallel-series models obtained from the FMA(Failure Mode Approach) based on major failure mechanisms or critical failure states of each girder. In the paper, an improved IST(Importance Sampling Technique) simulation algorithm is used for the system reliability analysis of the proposed models. This paper proposes a practical but rational approach for the evaluation of capacity rating in terms of the equivalent system-capacity rating corresponding to the estimated system-reliability index which is derived based on the concept of the equivalent FOSM(First Order Second Moment) form of system reliability index. The results of the reliability evaluation and rating of existing bridges indicate that the reserved reliability and capacity rating at system level are significantly different from those of element reliability or conventional methods especially in the case of highly redundant box-girder bridges.

  • PDF

Visualization of Structural Shape Information based on Octree using Terrestrial Laser Scanning (3D레이저스캐닝을 이용한 옥트리기반 구조물 형상정보 가시화)

  • Cha, Gichun;Lee, Donghwan;Park, Seunghee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.8-16
    • /
    • 2016
  • This study presents the visualization of shape information based on Octree using 3D laser scanning. The process of visualization was established to construct the Octree structure from the 3D scan data. The scan data was converted to a 2D surface through the mesh technique and the surface was then converted to a 3D object through the Raster/Vector transformation. The 3D object was transmitted to the Octree Root Node and The shape information was constructed by the recursive partitioning of the Octree Root Node. The test-bed was selected as the steel bridge structure in Sungkyunkwan University. The shape information based on Octree was condensed into 89.3%. In addition, the Octree compressibility was confirmed to compare the shape information of the office building, a computer science campus in Germany and a New College in USA. The basis is created by the visualization of shape information for double-deck tunnel and it will be expected to improve the efficiency of structural health monitoring and maintenance.

Magnetic Hysteresis Monitoring according to the Change of Tensile Force and Steel Class of PS Tendons (PS 텐던 강종별 긴장력 변화에 따른 자기이력 모니터링)

  • Kim, Junkyeong;Park, Seunghee;Lee, Hwanwoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.2
    • /
    • pp.115-120
    • /
    • 2018
  • This paper introduces a magnetic hysteresis monitoring result to apply an EM sensing technique for estimating tensile force of PSC girder to various class of PS tendon. The tensile force of PS tendon is a very important factor in the performance evaluation of PSC bridges. However, in this time, the tensile force was just measured only during construction and it does not monitored after construction. To measure the tensile force of PS tendons, the EM sensing based NDT method was developed but the proposed method cannot be applied to various class of PS tendons. Thus this study performed the magnetic hysteresis measurement according to the tensile force for class B, C and D PS tendons through experimental study. The specific tensile forces(50, 100, 150, 180kN) were induced to the each specimens and the magnetic hysteresis curve was measured at each point. The permeability of specimens were gradually decreased according to increase of tensile force. Especially, the slopes of permeability variation of class B and C were similar while that of class D was different.

Detection of Fracture Signals of Low Prestressed Steel Wires in a 10 m PSC Beam by Continuous Acoustic Monitoring Techniques (연속음향감지기법을 이용한 긴장력이 감소된 10 m PSC보의 PS 강선 파단음파 감지)

  • Youn, Seok-Goo;Lee, Chang-No
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.113-122
    • /
    • 2010
  • Corrosion of prestressing tendons and wire fractures in grouted post-tensioned prestressed concrete bridges have been considered as a serious safety problem. In bridge evaluation the condition of prestressing tendons should be inspected, and if corroded tendons are found, the loss of tendon area should be included when we calculate the ultimate strength. In the previous study, it was evaluated that continuous acoustic monitoring techniques could be considered as a reliable non-destructive method for detecting wire fractures of fully grouted post-tensioned prestressing tendons. In the present study, an experimental test was performed for detecting wire fractures of post-tensioned prestressing tendons which are prestressed lower than current design level. A 10 m prestressed concrete beam was fabricated, which included two tendons prestressed 66 percentage and 40 percentage of tensile strength, respectively. The corrosion of two tendons was induced by an accelerated corrosion equipment and the test beam was monitored by using seven acoustic sensors and a continuous acoustic monitoring system. From each prestressing tendon, two acoustic signals of wire fractures were successfully detected and source locations were estimated within 20 mm error. Based on the test results, it is considered that continuous acoustic monitoring techniques can be applied to detect low-prestressed wire fracture in fully grouted post-tensioned prestressed concrete beams.

Strengthen Effect of RC Beam Overlaid or Repaired by VES-LMC (초속경 라텍스개질콘크리트로 덧씌우기 및 보수된 철근콘크리트보의 보강효과)

  • Choi, Sung-Yong;Yun, Kyong-Ku;Choi, Seung-Sic
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.423-430
    • /
    • 2008
  • VES-LMC (very-early strength latex-modified concrete) has been widely used as repair material for bridge deck overlay or rehabilitation, because the overlaid or repaired could be opened to the traffic after 3 hours of curing. Although the field performance of VES-LMC generally indicates that it has an excellent bonding to the substrate and shows a long term performance, little quantitative data or research results have been presented in the literature on structural studies. The purpose of this study was to investigate the flexural behavior, interfacial performance, crack propagation, and strengthen effect of RC beam overlaid or repaired by VES-LMC through the 4-point flexural loading test. Two different types of RC beam were fabricated for repair and rehabilitation types. The test result showed that the strengthen effect, in term of flexural stiffness, increases as the depth of repair or overlay increases. More than 40% of stiffness was improved when the depth of repair was up to steel position. However, there was a little difference between 80 mm and 120 mm repaired beam. This means the repair depth must be considered. The interfacial behavior data showed that the repaired or overlaid beams had a little relative displacement. This means that two materials behave comparatively acting together. However, there were two specimens which had large displacement at the interface, because of poor bond strength. This suggested that interface treatment is one of the most important jobs in composite beams.

Evaluation of Mechanical Test Characteristics according to Welding Position in FCAW Heterojunction (FCAW 이종접합에서 용접자세에 따른 기계적 시험 특성 평가)

  • Cho, Byung-Jun;Lee, Soung-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.649-656
    • /
    • 2019
  • Flux cored arc welding (FCAW), which is used widely in many fields, such as shipyards, bridge structures, construction machinery, and plant industry, is an alternative to shielded metal arc welding (SMAW). FCAW is used largely in the welding of carbon and alloy steel because it can be welded in all poses and obtain excellent quality in the field under a range of working conditions. In this study, the mechanical properties of welded parts were analyzed after different welding of SS400 and SM490A using FCAW. The following conclusions were drawn. The tensile test results satisfied the KS standard tensile strength in the range of 400~510 N/mm2 in all welding positions. The bending test confirmed that most of the specimens did not show surface breakage or other defects during bending and exhibited sufficient toughness, even after plastic deformation. The hardness test results were lower than the standard value of 350 Hv of KS B 0893. Similar to the hardness test, were greater than the KS reference value. The macro test revealed no internal flaws, non-metallic inclusions, bubbles or impurities on the entire cross section of the weld, and there were no concerns regarding lamination.

Non-contact Stress Measurement in Steel Member of PSC Box Bridge Using Raman Spectroscopy (라만 형광 분광법을 이용한 PSC 박스교 인장케이블 응력측정방법 연구)

  • Kim, Jongwoo;Kim, Namgyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.130-134
    • /
    • 2019
  • In this paper, a laser-based non-contact load cell is newly developed for measuring forces in prestressed concrete tendons. First, alumina particles have been sprayed onto an empty load cell which has no strain gauges on it, and the layer has been used as a passive stress sensor. Then, the spectral shifts in fluorescence spectroscopy have been measured using a laser-based spectroscopic system under various force levels, and it has been found that the relation of applied force and spectral shift is linear in a lab-scale test. To validate the field applicability of the customized load cell, a full-scale prestressed concrete specimen has been constructed in a yard. During the field test, it was, however, found that the coating surface has irregular stress distribution. Therefore, the location of a probe has to be fixed onto the customized load cell for using the coating layer as a passive stress sensor. So, a prototype customized load cell has been manufactured, which consists of a probe mount on its casing. Then, by performing lab-scale uniaxial compression tests with the prototype load cell, a linear relation between compression stress and spectrum shift at a specific point where laser light had been illuminated has been detected. Thus, it has a high possibility to use the prototype load cell as a force sensor of prestressed concrete tendons.

A Study on the Numerical Analysis Methods for Predicting Strength Test Result of Box Girder under Bending Moment (휨 모멘트를 받는 박스거더 구조 강도 실험에 대한 수치해석 방법에 관한 연구)

  • Myung-Su Yi;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.488-496
    • /
    • 2023
  • Ship and bridge structures are a type of long box-shaped structure, and resistance to vertical bending moment is a key factor in their structural design. In particular, because box girders are repeatedly exposed to irregular wave loads for a long time, the continuous collapse behavior of structural members must be accurately predicted. In this study, plastic collapse behavior, including buckling according to load changes of the box girder receiving pure bending moments, was analyzed using a numerical analysis method. The analysis targets were selected as three box girders used in the Gordo experiment. The cause of the difference was considered by comparing the results of the structural strength experiment with those of non-linear finite element analysis. This study proposed a combination of the entire and local sagging shape to reflect the effect of the initial sagging caused by welding heat that is inevitably used to manufacture carbon steel materials. The procedures reviewed in the study and the contents of the initial sagging configuration can be used as a good guide for analyzing the final strength of similar structures in the future.

Coefficients of Moment Equations for Long-Span Soil-Metal Box Structures (장지간 지중강판 박스구조물의 휨모멘트 계수식 제안)

  • Choi, Dong Ho;Lee, Seung Jae;Cho, Yong Woo;Park, Sang Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.133-142
    • /
    • 2006
  • This paper evaluates the moment equations in the 2000 Canadian highway bridge code (CHBDC) for soil-metal box structures, which are applicable to the span less than 8 m. Finite element analyses carried out for soil-metal box structures having spans of 3-12 m using the deep corrugated metal plates under three construction stages; backfill up to the crown, backfill up to the cover depth, and live loading. The coefficients of moment equations are newly proposed based on the results of numerous finite element analyses considering various design variables, such as span length, soil depth, backfill conditions. The validity of the proposed coefficients in the moment equations of the 2000 CHBDC is investigated by the comparison with the existing coefficients and numerical results of finite element analyses. The comparisons show that the moments of the 2000 CHBDC give good predictions for the span less than 8m, but underestimate for the span greater than 8m, whereas the proposed moments give good estimates of numerical results for the spans of 3-12 m. In addition, this study suggests the use of high strength steel to satisfy the requirement of design bending strength for the span greater than 8 m.