• Title/Summary/Keyword: Steel bar corrosion

Search Result 142, Processing Time 0.024 seconds

Assessment of Corrosion Rate of Reinforcing Steel in Concrete Using Galvanostatic Pulse Transient Technique

  • So, Hyoung-Seok;Millard, Stephen Geoffrey
    • International Journal of Concrete Structures and Materials
    • /
    • v.1 no.1
    • /
    • pp.83-88
    • /
    • 2007
  • This paper discusses a method of measuring transient potential response of a corrosion interface to a small galvanostatic pulse perturbation for a rapid assessment of the corrosion rate of reinforcing steel in concrete structures. Measurements were taken on 100 mm sections of steel bars which were subjected to a wide range of corrosion conditions, from passive steel to actively corroding steel. The duration of the applied galvanostatic pulse was varied between 5s and 180s, and the lateral distance of the point of measurement on the steel bar varied from zero to 400 mm. The result of the electrochemical transient response was investigated using a typical sampling rate of 1 kHz. Analysis of the transient potential response to the applied galvanostatic pulse has enabled the separation of equivalent electronic components so that the components of a series of capacitances and resistances, whose values are dependent on the corrosion condition of the reinforcing steel, could be isolated. The corrosion rate was calculated from a summation of the separate resistive components, which were associated with the corrosion interface, and was compared with the corrosion rate obtained from linear polarization resistance (LPR) method. The results show that the galvanostatic pulse transient technique enables the components of the polarization resistance to be evaluated separately so as to give more reliable corrosion rate values than those obtained from the LPR method. Additionally, this paper shows how the galvanostatic pulse transient response technique can be implemented. An appropriate measurement time for passive and actively corroding reinforcing steel is suggested for the galvanostatic pulse transient response measurements in the field site.

Modeling cover cracking due to rebar corrosion in RC members

  • Allampallewar, Satish B.;Srividya, A.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.6
    • /
    • pp.713-732
    • /
    • 2008
  • Serviceability and durability of the concrete members can be seriously affected by the corrosion of steel rebar. Carbonation front and or chloride ingress can destroy the passive film on rebar and may set the corrosion (oxidation process). Depending on the level of oxidation (expansive corrosion products/rust) damage to the cover concrete takes place in the form of expansion, cracking and spalling or delamination. This makes the concrete unable to develop forces through bond and also become unprotected against further degradation from corrosion; and thus marks the end of service life for corrosion-affected structures. This paper presents an analytical model that predicts the weight loss of steel rebar and the corresponding time from onset of corrosion for the known corrosion rate and thus can be used for the determination of time to cover cracking in corrosion affected RC member. This model uses fully the thick-walled cylinder approach. The gradual crack propagation in radial directions (from inside) is considered when the circumferential tensile stresses at the inner surface of intact concrete have reached the tensile strength of concrete. The analysis is done separately with and without considering the stiffness of reinforcing steel and rust combine along with the assumption of zero residual strength of cracked concrete. The model accounts for the time required for corrosion products to fill a porous zone before they start inducing expansive pressure on the concrete surrounding the steel rebar. The capability of the model to produce the experimental trends is demonstrated by comparing the model's predictions with the results of experimental data published in the literature. The effect of considering the corroded reinforcing steel bar stiffness is demonstrated. A sensitivity analysis has also been carried out to show the influence of the various parameters. It has been found that material properties and their inter-relations significantly influence weight loss of rebar. Time to cover cracking from onset of corrosion for the same weight loss is influenced by corrosion rate and state of oxidation of corrosion product formed. Time to cover cracking from onset of corrosion is useful in making certain decisions pertaining to inspection, repair, rehabilitation, replacement and demolition of RC member/structure in corrosive environment.

Effect of degree of corrosion on the mechanical properties of rebar (철근부식정도가 철근의 역학적 특성에 미치는 영향)

  • Cheong, Hai-Moon;Lee, Chan-Young;Ahn, Tas-Song;Tae, Sung-Ho;Lee, Han-Seung;Kang, In-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.257-260
    • /
    • 2006
  • This paper reports results of a study conducted to assess the effect of degree of corrosion of reinforcing steel bar on their mechanical properties. Reinforcing steel bars, 13mm in diameter, that were corroded by electrically accelerated corrosion method in concrete specimens were removed and tested in tension. Results indicated that the level of reinforcement corrosion influenced yield point, the tensile strength and elongation of steel bars.

  • PDF

Effect of Surface Condition and Corrosion-Induced Defect on Guided Wave Propagation in Reinforced Concrete

  • Na, Won-Bae;Kang, Dong-Baek
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.1-6
    • /
    • 2006
  • Corrosion of reinforcing steel bars is a major concern for ocean engineers when reinforced concrete structures are exposed to marine environments. Evaluating the degree of corrosion and corrosion-induced defects is extremely necessary to pursue a proper retrofit or rehabilitation plan for reinforced concrete structures. A promising inspection should be carried out for the evaluation, otherwise the retrofit or rehabilitation process would be useless. Nowadays, ultrasonic guided wave-based inspection techniques become quite promising for the inspection, mainly because of their long-range propagation capability and their sensitivity to different types of defects or conditions. Evaluating haw the guided waves response to the different types of defects or conditions is quite challenging and important. This study shows how surface conditions of reinforcing bars and a corrosion-induced defect, separation, affect guided wave propagation in reinforced concrete. Experiments and associated signal analysis show the sensitivity of guided waves to the surface conditions, as well as the amounts of separation at the interface between. concrete and steel bar.

Probing of Concrete Specimens using Ground Penetration Radar

  • Rhim, HongChul
    • Corrosion Science and Technology
    • /
    • v.3 no.6
    • /
    • pp.262-264
    • /
    • 2004
  • Ground Penetrating Radar (GPR) has been used to image inside concrete specimens embedded with steel bars and delamination. An imaging algorithm has been developed to improve measurement output generated from a commercial radar system. For the experiments, laboratory size concrete specimens are made with the dimensions of $1,000mm(W){\times}1,000mm(L){\times}250mm(D)$. The results have shown improved output of the radar measurements compared to commercially available processing methods.

A Study on the Rust-protection Performance of Concrete using Ground Granulated Blast-furnace Slag (고로슬래그 미분말을 사용한 콘크리트의 방청성능에 관한 연구)

  • Park, Sang-Joon;Kim, Dong-Seok;Won, Cheol;Lee, Sang-Soo;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.529-532
    • /
    • 2001
  • In this paper, rust-protection performance of concrete using ground granulated blast-furnace slag are discussed. 4 kinds of W/B in combination with 3 kinds of replacement ratio of ground granulated blast-furnace slag and 2 kinds of chloride ion contents of are selected as experimental parameters. According to the experimental results, as the replacement ratio of ground granulated blast-furnace slag is increased, the corrosion area of steel bar tends to be decreased. However, as the autoclave cycle and chloride ion contents are increased, the corrosion area of steel bar is increased. In conclusion, when the replacement ratio of ground granulated blast-furnace slag is 50%, the strength and rust-protection performance appear to be most excellent.

  • PDF

Finite Element Analysis of Chloride Ion Intrusion into Coastal Concrete Structure

  • Kim, Eun-Kyum;Shin, Chee-Bur;Yeau, Kyong-Yun
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.175-180
    • /
    • 1999
  • In order to predict the onset of the corrosion of steel bars in concrete, a mathematical model was presented to observe the diffusion of chloride ion in aqueous phase, the adsorption and desorption of chloride ions to and from the surface of solid phase of concrete, and the chemical reaction or chloride ions with solid phase. The finite element method was employed to carry out the numerical analysis. The chlorides enetrating through the wall of the concrete structure from the external environment and the chlorides contained in the concrete admixture were confirmed to be two important factors to determine the onset of the corrosion of steel bars.

  • PDF

Influence of Loading on the Corrosion of Reinforcing Bar (철근콘크리트 보의 철근부식에 미치는 하중의 영향에 관한 연구)

  • 김형래;윤상천;지남용
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.171-179
    • /
    • 1999
  • The present research investigated the interaction among loading level, corrosion rate and flexural deflection of reinforced concrete beams. 10cm$\times$15cm$\times$110cm reinforced concrete beams were prepared and subjected to different levels of flexural loading, including 0%, 45% and 75% of the ultimate load. The beams with either a pre-load or a sustained load were also exposed to a laboratory environment with ponding and wetting/drying cycling at room temperature. Half cell potential and galvanized current measurements were taken to monitor corrosion process of reinforcing steel. After corrosion initiation, external current was applied to some of the beams to accelerate corrosion propagation. The beam deflections were recorded during the entire tests. The results indicate that loading level has significant effect on corrosion rate. The beams under a sustained load had much higher corrosion rate than the pre-loaded and then unloaded beams. Significant corrosion may result in an increase in beam deflection and affect serviceability of the structure. The present research may provide an insight into structural condition evaluation and service life predictions of reinforced concrete.