• Title/Summary/Keyword: Steel angle

Search Result 892, Processing Time 0.032 seconds

Spacing of Intermediate Diaphragms Horizontally Curved Steel Box Girder Bridges considering Bending-distortional Warping Normal Stress Ratio (곡선 강박스 거더의 휨-뒤틀림 응력비에 따른 중간 다이아프램 간격)

  • Lee, Jeong-Hwa;Lee, Kee-Sei;Lim, Jeong-Hyun;Choi, Jun-Ho;Kang, Young-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6325-6332
    • /
    • 2015
  • Although distortions of horizontally curved box girder are more susceptible than which of the straight girder due to curvature effect, current domestic design standards does not present spacing of intermediate diaphragms for the curved box girder. In this study, parametric studies for straight and curved box girder considering distortional warping normal stresses based on linear finite element analysis were carried out. Single span curved girders were chosen for analysis based on current domestic bridge data with 1-6 of solid intermediate diaphragms, 0-30 degree of subtended angle, 30m and 60m of span length and 2-3m of flange width and web height. The adequate spacing of diaphragms for the box girder were suggested considering subtended angles and bending and distortional warping normal stress ratios with 5%, 10%, 15% and 20%. The analysis results were also compared to a current design standard and suggested spacing of diaphragm were evaluated.

Study on the Suitability of Composite Materials for Enhancement of Automotive Fuel Economy (자동차 연비향상을 위한 복합재료 적용 타당성에 관한 연구)

  • Ju, Yeon Jin;Kwon, Young-Chul;Choi, Heung Soap
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.284-289
    • /
    • 2019
  • In the present paper, the dynamic force-moment equilibrium equations, driving power and energy equations are analyzed to formulate the equation for fuel economy(km/liter) equivalent to the driving distance (km) divided by the fuel volume (liter) of the vehicle, a selected model of gasoline powered KIA K3 (1.6v). In addition, the effects of the dynamic parameters such as speed of vehicle (V), vehicle total weight(M), rolling resistance ($C_r$) between tires and road surface, inclined angle of road (${\theta}$), as well as the aerodynamic parameters such as drag coefficient ($C_d$) of vehicle, air density(${\rho}$), cross-sectional area (A) of vehicle, wind speed ($V_w$) have been analyzed. And the possibility of alternative materials such as lightweight metal alloys, fiber reinforced plastic composite materials to replace the conventional steel and casting iron materials and to reduce the weight of the vehicle has been investigated by Ashby's material index method. Through studies, the following results were obtained. The most influencing parameters on the fuel economy at high speed zone (100 km/h) were V, the aerodynamic parameters such as $C_d$, A, ${\rho}$, and $C_r$ and M. While at low speed zone (60 km/h), they are, in magnitude order, dynamic parameters such as V, M, $C_r$ and aerodynamic ones such as $C_d$, A, and ${\rho}$, respectively.

Capacity Design of Eccentrically Braced Frame Using Multiobjective Optimization Technique (다목적 최적화 기법을 이용한 편심가새골조의 역량설계)

  • Hong, Yun-Su;Yu, Eunjong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.419-426
    • /
    • 2020
  • The structural design of the steel eccentrically braced frame (EBF) was developed and analyzed in this study through multiobjective optimization (MOO). For the optimal design, NSGA-II which is one of the genetic algorithms was utilized. The amount of structure and interfloor displacement were selected as the objective functions of the MOO. The constraints include strength ratio and rotation angle of the link, which are required by structural standards and have forms of the penalty function such that the values of the objective functions increase drastically when a condition is violated. The regulations in the code provision for the EBF system are based on the concept of capacity design, that is, only the link members are allowed to yield, whereas the remaining members are intended to withstand the member forces within their elastic ranges. However, although the pareto front obtained from MOO satisfies the regulations in the code provision, the actual nonlinear behavior shows that the plastic deformation is concentrated in the link member of a certain story, resulting in the formation of a soft story, which violates the capacity design concept in the design code. To address this problem, another constraint based on the Eurocode was added to ensure that the maximum values of the shear overstrength factors of all links did not exceed 1.25 times the minimum values. When this constraint was added, it was observed that the resulting pareto front complied with both the design regulations and capacity design concept. Ratios of the link length to beam span ranged from 10% to 14%, which was within the category of shear links. The overall design is dominated by the constraint on the link's overstrength factor ratio. Design characteristics required by the design code, such as interstory drift and member strength ratios, were conservatively compared to the allowable values.

A Study on Seismic Performance of External Reinforcement for Unreinforced Masonry Buildings (비보강 조적조 건축물의 외부 보강에 따른 내진성능 연구)

  • Jong-Yeon Kim;Jong Kang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.43-52
    • /
    • 2024
  • In this study, we evaluated the seismic performance of a masonry building that was not designed to be earthquake-resistant and attempted to improve the seismic performance by adopting a seismic reinforcement method on the exterior of the building. In addition, the building seismic design standards and commentary(KDS 41 17 00:2019) and existing facility(building) seismic performance evaluation methods were applied to evaluate seismic performance, and a pushover analysis was performed using non-linear static analysis. As the result of this study, it was determined that seismic reinforcement was urgent because the distribution rate of earthquake-resistant design of houses in Korea was low and masonry structures accounted for a large proportion of houses. When reinforcing the steel beam-column+brace frame in a masonry building, the story drift angle was 0.043% in the X direction and 0.047% in the Y direction, indicating that it satisfied the regulations. The gravity load resistance capacity by performance level was judged to be a safe building because it was habitable in both X and Y directions. In conclusion, it is believed that the livability and convenience of the house can be secured by reinforcing the exterior of the building and the seismic performance and behavior of the structure can be clearly predicted.

Study on the Physical Properties of Artificial Soil for Tillage Experiments (경운실험(耕耘實驗)을 위(爲)한 인공토양(人工土壤)의 물리적(物理的) 특성(特性)에 관(關)한 연구(硏究))

  • Kim, Kee-Dae;Hur, Yun-Kun;Kim, Man-Soo;Kim, Soung-Rai
    • Korean Journal of Agricultural Science
    • /
    • v.5 no.2
    • /
    • pp.127-135
    • /
    • 1978
  • For improvement and new design of tillage equipments, indoor test is very useful and more desirable than outdoor because the experiment of outdoor is very difficult and its cost is expensive. This study was carried out to determine the physical properties of artificial soil suitable for the indoor test with the soil bin manufactured at the workshop of the Dept. of Agricultural Machinery Engineering. The artificial soil being studied was made with very similarity to the natural soil of the experimental plots of Chungnam National University, and it consist of 39.35 percent, by weight of bentonite and 48.10 percent of sand with 12.55 percent of SAE 10W oil. The results are summarized as follows: 1. Bulk density increased with increasing number of rolling, and its relationship could be expressed. $y=1.073200+0.070780x-0.002263x^2$ where, y=bulk density ($g/cm^3$), x=number of rolling. These results could be explained that the effect of rolling velocity on the bulk density was not singnificant in the range of 4.5~10.4 em/sec. 2. The absolute soil hardness depended directly upon number of rolling, and their relationship could be expressed by the equation. $y=37.74(0.64 +0.17x-0.0054x^2)/(3.36-0.17x-0.0054x^2)^3$. where, y=absolute soil hardness($kg/cm^3$), x=number of rolling. 3. Relationship between the bulk density and absolute soil hardness could be expressed by the equation; $y=37.74(2.46x-2.02)/(6.02-2.46x)^3$. where, y=absolute soil hardness, x=bulk density. 4. The cohesion and the angle of internal friction of artificial soil were increased with increasing its bulk density. According to the cohesion and angle of internal friction, at the range of 1.60~1.75 ($g/cm^3$) of bulk density, this artificial soil was similar with sandy loam of 29.5% moisture content of natural soil. 5. Sliding-fricfion coefficient of steel plate on the artificial soil was 0.3~0.4 and rubber plate on it is 0.64~0.72. Those values were very similar with those of natural soil being studies by many others.

  • PDF

The effect of copper alloy scaler tip on the surface roughness of dental implant and restorative materials (구리 합금 초음파 스케일러 팁이 치과 임플란트 및 수복 재료 표면에 미치는 영향)

  • Lee, Ah-Reum;Chung, Chung-Hoon;Jung, Gyu-Un;Pang, Eun-Kyoung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.3
    • /
    • pp.177-185
    • /
    • 2014
  • Purpose: This study is designed to investigate the various impacts of different types of scaler tips such as cooper alloy base tip and the others on the surface roughness of teeth and implant by the method which is currently in clinical use. Materials and methods: Four different types of disc shaped porcelain, titanium, zirconia, and Type III gold alloy dental materials sized 15 mm diameter, 1.5 mm thickness were used for the experiment. Plastic hand curette (Group PS), cooper alloy new tip (Group IS), and stainless steel tip (Group SS) were used as testing appliances. A total of 64 specimens were used for this study; Four specimens for each material and appliance group. Surface roughness was formed with 15 degree angle in ultrasonic scaler tip and with 45 degree angle in hand curette of instrument tip and the specimen surface with 5 mm long, one horizontal-reciprocating motion per second for 30 seconds by 40 g force. To survey the surface roughness of each specimen, a field emission scanning electron microscope, an atomic force microscope, and a surface profiler were used. (Ra, ${\mu}m$). Results: According to SEM, most increased surface roughness was observed in SS group while IS groups had minimal roughness change. Measurement by atomic force microscope presented that the surface roughness of SS group was significantly greater than those of PS, IS and control groups in the type III gold alloy group (P<.05). IS group showed lesser surface roughness changes compared to SS group in porcelain and gold alloy group (P<.05). According to surface profiler, surface roughness of SS group showed greater than those of PS, IS and control groups and IS group showed lesser than those of SS group in all specimen groups. Type III gold alloy group had large changes on surface roughness than those of porcelain, titanium, zirconia (P<.05). Conclusion: The result of this study showed that newly developed copper alloy scaler tip can cause minimal roughness impacts on the surface of implant and dental materials; therefore this may be a useful alternative for prophylaxis of implant and restored teeth.

Motion Analysis of Light Buoys Combined with 7 Nautical Mile Self-Contained Lantern (7마일 등명기를 결합한 경량화 등부표의 운동 해석)

  • Son, Bo-Hun;Ko, Seok-Won;Yang, Jae-Hyoung;Jeong, Se-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.628-636
    • /
    • 2018
  • Because large buoys are mainly made of steel, they are heavy and vulnerable to corrosion by sea water. This makes buoy installation and maintenance difficult. Moreover, vessel collision accidents with buoys and damage to vessels due to the material of buoys (e.g., steel) are reported every year. Recently, light buoys adopting eco-friendly and lightweight materials have come into the spotlight in order to solve the previously-mentioned problems. In Korea, a new lightweight buoy with a 7-Nautical Mile lantern adopting expanded polypropylene (EPP) and aluminum to create a buoyant body and tower structure, respectively, was developed in 2017. When these light buoys are operated in the ocean, the visibility and angle of light from the lantern installed on the light buoys changes, which may cause them to function improperly. Therefore, research on the performance of light buoys is needed since the weight distribution and motion characteristics of these new buoys differ from conventional models. In this study, stability estimation and motion analyses for newly-developed buoys under various environmental conditions considering a mooring line were carried out using ANSYS AQWA. Numerical simulations for the estimation of wind and current loads were performed using commercial CFD software, Siemens STAR-CCM+, to increase the accuracy of motion analysis. By comparing the estimated maximum significant motions of the light buoys, it was found that waves and currents were more influential in the motion of the buoys. And, the estimated motions of the buoys became larger as the sea state became worser, which might be the reason that the peak frequencies of the wave spectra got closer to those of the buoys.

The effect of bracket width on frictional force between bracket and arch wire during sliding tooth movement (치아의 활주 이동시 브라켓 폭이 브라켓과 호선 사이의 마찰력에 미치는 효과)

  • Choi, Won-Cheul;Kim, Tae-Woo;Park, Joo-Young;Kwak, Jae-Hyuk;Na, Hyo-Jeong;Park, Du-Nam
    • The korean journal of orthodontics
    • /
    • v.34 no.3 s.104
    • /
    • pp.253-260
    • /
    • 2004
  • Frictional force between the orthodontic bracket and arch wire during sliding tooth movement is related to many factors, such as the size, shape and material of both the bracket and wire, ligation method and the angle formed between the bracket and wire. There have been clear conclusions drawn in regard to most of these factors, but as to the effect of bracket width on frictional force there are only conflicting studies. This study was designed to investigate the effect of bracket width on the amount of frictional forces generated during clinically simulated tooth movement. Three different widths of brackets $(0.018{\times}0.025'\;standard)$ narrow (2.40mm), medium (3.00mm) and wide (4.25mm) were used in tandem with $0.016{\times}0.022'$ stainless steel wire. Three bracket-arch wire combinations were drawn on for 4 minutes on a testing apparatus with a head speed of 0.5mm/min and tested 7 times each. To reproduce biological conditions, dentoalveolar models were designed with indirect technique using a material with similar elastic properties as periodontal ligament (PDL). In addition, to minimize the effect of ligation force, elastomer was used with added resin, which was attached to the bracket to make up for the discrepancies of bracket width. The results were as follows: 1. Maximum frictional force for each bracket-arch wire combination was: Narrow (2.40mm): $68.09\pm4.69gmf$ Medium (3.00mm): $72.75\pm4.98 gmf$ Wide (4.25mm): $72.59\pm4.54gmf$ 2. Frictional force was increased with more displacement of wire through the bracket slot. 3. The ANOVA psot-hoc test showed that the bracker width had no significant effect on frictional force when tested under clinically simulated conditions(p>0.05).

THE EFFECT OF CYCLIC LOADING ON THE RETENTIVE STRENGTH OF FULL VENEER CROWNS (반복 하중이 Full veneer crown의 유지력에 미치는 영향에 관한 연구)

  • Kim, Ki-Youn;Lee, Sun-Hyung;Chung, Hun-Young;Yang, Jae-Ho;Heo, Seong-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.583-594
    • /
    • 2000
  • Dislodgement of a crown or extension bridge and the loosening of a retainer of a bridge is a serious clinical problem in fixed restoration. Generally these problems are considered to be associated with deformation of the restoration. During biting, the restoration is subjected to complex forces and deforms considerably within the limit of its elasticity. Deformation of the restoration under the occlusal force induces excessive stress in the cement film, which then leads to the cement fracture. Such a fracture may eventually cause loss of the restoration. Because most of the past retention tests for full veneer crown were done without fatigue loading, they were not exactly simulating intraoral environment. And the purpose of this study was to evaluate the effect of cyclic cantilever loading on the retentive strength of full veneer crowns depending on different type of cements and taper of prepared abutment. Steel dies with $8^{\circ}\;or\;16^{\circ}$ convergence angle were fabricated through milling and crowns with the same method. These dies and crowns were divided into 8 groups. Group 1 : $16^{\circ}$ taper die, cementation with zinc phosphate cement, without loading Group 2 : $16^{\circ}$ taper die, cementation with zinc phosphate cement, with loading Group 3 : $8^{\circ}$ taper die, cementation with zinc phosphate cement, without loading Group 4 : $8^{\circ}$ taper die, cementation with zinc phosphate cement, with loading Group 5 : $16^{\circ}$ taper die, cementation with Panavia 21, without loading Group 6 : $16^{\circ}$ taper die, cementation with Panavia 21, with loading Group 7 : $8^{\circ}$ taper die, cementation with Panavia 21 without loading Group 8 : $8^{\circ}$ taper die, cementation with Panavia 21, with loading After checking the fit of die and crown, the luting surface of dies and inner surface of crowns were air-abraded for 10 seconds. The crowns were cemented to the dies, with cements mixed according to the manufacturer's recommendations. A static load of 5kg was then applied for 10 minutes with static loading device. Twenty-four hours later, group 1, 3, 5, 7 were only thermocycled, group 2, 4, 6, 8 were subjected to cyclic loading after thermocycling. Retentive tests were performed on the Instron machine. From the finding of this study, the following conclusions were obtained 1. Panavia 21 showed significantly higher retentive strength than zinc phosphate cement for all groups (p<0.05). 2. There was a significant difference in the retentive strength between $8^{\circ}\;and\;16^{\circ}$ taper for zinc phosphate cement(p<0.05), but no significant difference for Panavia 21 (p>0.05). 3. Cyclic loading significantly decreased the retentive strength for all groups(p<0.05). 4. For zinc phosphate cement, there was 35% reduction of the retentive strength after loading in the $16^{\circ}$ taper die, 25% in the $8^{\circ}$ taper die, and for Panavia 21, 21% in the $16^{\circ}$ taper die, 18% in the $8^{\circ}$ taper die.

  • PDF

THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF THE PHENOMENON PRODUCED DURING RETRACTION OF FOUR MAXILLARY INCISORS (상악 4절치의 후방견인시 나타나는 현상에 관한 유한요소법적 분석)

  • Cheon, Ok-Jin;Kim, Tae-Woo;Suhr, Cheong-Hoon
    • The korean journal of orthodontics
    • /
    • v.25 no.5 s.52
    • /
    • pp.525-541
    • /
    • 1995
  • This study was designed to investigate force systems and tooth movements produced by retraction archwire during retraction of four maxillary incisors after the maxillary canine retraction into the maxillary first premolar extraction space using the computer-aided three-dimensional finite element method. A three-dimensional finite element model, consisting of 2248 elements and 3194 nodes, was constructed. The model consisted of maxillary teeth and surrounding periodontal membranes, .022'$\times$.028'-slot brackets, and 5 types of retraction archwires(.019'$\times$.025' stainless steel archwire) modeled using the beam elements. The contact between the wire and the bracket slot was modeled using the gap elements because of the non-linear elastic behaviors of the contact between them. The forces and moments, End displacements produced by retraction archwire were measured at various conditions to investigate the difference according to types of loops, magnitudes of activation force, gable angle, and anterior lingual root torque. The results were expressed quantitative and visual ways in the three-dimensional method. The following conclusions can be drawn from this study.1. When the tear-drop loop archwire was activated, the mesio-distal and lingual translational movements of the teeth helped to close the extraction space, but unwanted movements of the teeth including intrusions and extrusions, and rotational movements in each direction occurred. 2. Activation of T-loop archwire compared with those of other types of retraction archwires produced the least translational movements of the teeth helped to space closure and also the least unwanted movements of the teeth. 3. Increasing amount of activation in the tear-drop archwire led not only to increase of translational movements of the teeth helped to space closure, but also to increase of unwanted movements of the teeth. 4. Addition of gable bend in the tear-drop archwire helped anterior teeth to translational movements in the mesio-distal direction, but increased unwanted movements of the teeth 5. Addition of anterior lingual root torque in the tear-drop archwire helped central and lateral incisor to improve their facio-lingual inclination, but increased unwanted movements of the teeth.

  • PDF