• Title/Summary/Keyword: Steel Wound Pipe

Search Result 4, Processing Time 0.016 seconds

Comparison of Mechanical Properties on Helical/Hoop Hybrid Wound HNT Reinforced CFRP Pipe with Water Absorption Behavior (CFRP 파이프의 와인딩 적층 패턴 설계 및 HNT 나노입자 보강에 따른 수 환경에서의 기계적 물성 평가)

  • Choi, Ji-Su;Park, Soo-Jeong;Kim, Yun-Hae
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.174-179
    • /
    • 2021
  • Currently, fluid transfer steel pipes take a lot of time and expense to maintain all facilities due to new construction and painting or corrosion and aging. Therefore, this study was conducted for designing a CFRP pipe structure with high corrosion resistance and chemical resistance as a substitute for steel pipes. The helical/hoop pattern was cross-laminated to improve durability, and HNT was added to suppress the moisture absorption phenomenon of the epoxy. The HNT/CFRP pipe was manufactured by a filament winding process, and performed a mechanical property test, and a moisture absorption test in distilled water at 70℃. As a result, the highest bending strength was obtained when the hoop pattern was laminated with a thickness equivalent to 0.6% of the pipe. The 0.5 wt% HNT specimen had the highest moisture absorption resistance. Also, the delamination phenomenon at the interlayer interface was delayed, resulting in the lowest strength reduction rate.

CFD and Experimental Study of Gas Flow inside the Wounding Steel Pipe Fitted in Reciprocating Hydrogen Compressor (왕복동식 수소 압축기의 강관 관로 내부 가스흐름의 CFD와 실험)

  • Chung, H.S.;Rahman, M. Sq.;Lee, G.H.;Woo, J.S.;Kim, B.H.;Jeong, H.M.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.25-32
    • /
    • 2010
  • 전 세계적으로 급속도로 인기가 더해가고 있는 수소에너지는 높은 전환 효율성, 재생성, 친환경적인 특징을 가지며 미래의 주 에너지가 될 것이다. 왕복동식 압축기를 통과한 후의 수소 가스의 압력은 높은 맥동압을 가진다. 스너버는 압축기의 한 구성품으로 맥동압을 낮추고 수소가스의 불순물을 제거하기 위해 사용된다. 이 연구에서의 실험은 스너버 시스템에 사용된 강관의 맥동에 관해 조사하기 위해서 수행되었다. 맥동압은 12 Hz ~ 60 Hz의 모터속도에서 RMS값을 기준으로 0.1625% ~ 0.5305% 그리고 평균압력을 기준으로 0.1621% ~ 0.5277% 감소하였다. 압력손실은 RMS값을 기준으로 0.1092% ~ 1.4419%, 평균압력을 기준으로 0.1493% ~ 1.7507%로 측정되었다. CFD를 이용한 수치해석값은 실험값이 거의 비슷한 결과를 나타내고 강관 관로 내부 가스의 자세한 압력을 설명하기 위한 중요한 역할을 수행한다.

Experimental behavior assessment of short, randomly-oriented glass-fiber composite pipes

  • Salar Rasti;Hossein Showkati;Borhan Madroumi Aghbashi;Soheil Nejati Ozani;Tadeh Zirakian
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.679-691
    • /
    • 2023
  • The application of short, fiber-reinforced polymer composite pipes has been increasing rapidly. A comprehensive review of the prior research reveals that the majority of the previously-reported studies have been conducted on the filament-wound composite pipes, and fewer studies have been reported on the mechanical behavior of short, randomly-oriented fiber composite pipes. On this basis, the main objective of this research endeavor is to investigate the mechanical behavior and failure modes of short, randomly-oriented glass-fiber composite pipes under three-point bending tests. To this end, an experimental study is performed in order to explore the load-bearing capacity, failure mechanism, and deformation performance of such pipes. Fourteen properly-instrumented composite pipe specimens with different diameters, thicknesses, lengths, and nominal pressures have been tested and also simulated using the finite element approach for verification purposes. This study demonstrates the effectiveness of the diameter-to-thickness ratio, length-to-diameter ratio, and nominal pressure on the mechanical behavior and deformation performance of short, randomly-oriented glass-fiber composite pipes.

A Fundamental Study of VIV Fatigue Analysis Procedure for Dynamic Power Cables Subjected to Severely Sheared Currents (강한 전단 해류 환경에서 동적 전력케이블의 VIV 피로해석 절차에 관한 기초 연구)

  • Chunsik Shim;Min Suk Kim;Chulmin Kim;Yuho Rho;Jeabok Lee;Kwangsu Chea;Kangho Kim;Daseul Jeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.5
    • /
    • pp.375-387
    • /
    • 2023
  • The subsea power cables are increasingly important for harvesting renewable energies as we develop offshore wind farms located at a long distance from shore. Particularly, the continuous flexural motion of inter-array dynamic power cable of floating offshore wind turbine causes tremendous fatigue damages on the cable. As the subsea power cable consists of the helical structures with various components unlike a mooring line and a steel pipe riser, the fatigue analysis of the cables should be performed using special procedures that consider stick/slip phenomenon. This phenomenon occurs between inner helically wound components when they are tensioned or compressed by environmental loads and the floater motions. In particular, Vortex-induced vibration (VIV) can be generated by currents and have significant impacts on the fatigue life of the cable. In this study, the procedure for VIV fatigue analysis of the dynamic power cable has been established. Additionally, the respective roles of programs employed and required inputs and outputs are explained in detail. Demonstrations of case studies are provided under severely sheared currents to investigate the influences on amplitude variations of dynamic power cables caused by the excitation of high mode numbers. Finally, sensitivity studies have been performed to compare dynamic cable design parameters, specifically, structural damping ratio, higher order harmonics, and lift coefficients tables. In the future, one of the fundamental assumptions to assess the VIV response will be examined in detail, namely a narrow-banded Gaussian process derived from the VIV amplitudes. Although this approach is consistent with current industry standards, the level of consistency and the potential errors between the Gaussian process and the fatigue damage generated from deterministic time-domain results are to be confirmed to verify VIV fatigue analysis procedure for slender marine structures.